Cryptographic Corollaries of the Classification of Finite Simple Groups

Analysis of a candidate problem in post-quantum cryptography

Christopher Battarbee¹, **Giacomo Borin**², Ryann Cartor, Nadia Heninger, David Jao, Delaram Kahrobaei, Laura Maddison, Edoardo Persichetti, Angela Robinson, Daniel Smith-Tone, Rainer Steinwandt.

Presented at the NIST Crypto Reading Club on 2024-07-10

¹Sorbonne University, ²IBM Research Zurich & University of Zurich

Outline

- 1. Introduction to SDLP
- 2. Reduction to Simple Groups
- 3. Simple Groups Analysis
- 4. Linear Groups Analysis
- 5. Sporadic Groups

Introduction to SDLP

PQC Candidates	Classical Crypto
Lattices	Cyclic groups
Linear codes	Residue groups
Isogenies	
Multivariate	

Can we study cryptography in more complicated group structures?

Semidirect Product

Let G be a finite group and Aut(G) its group of automorphisms. We define $G \rtimes Aut(G)$ to be the group of pairs in $G \times Aut(G)$ equipped with the following multiplication:

$$(g,\phi)(h,\psi) := (g\phi(h),\phi\circ\psi)$$

Notice $G \longleftrightarrow Aut(G) \qquad (g, \phi)^2 = (g\phi(g), \phi^2)$ $(g, \phi)^3 = (g, \phi)(g\phi(g), \phi^2)$ $= (g\phi(g)\phi^2(g), \phi^3)$ $(g, \phi)^4 = (g, \phi)(g\phi(g)\phi^2(g), \phi^3)$ $= (g\phi(g)\phi^2(g)\phi^3(g), \phi^4)$

Definitions

Semidirect Exponentiation

Fix $(g, \phi) \in G \rtimes Aut(G)$. Define $s_{g,\phi} : \mathbb{Z} \to G$ to be the group element such that

$$(g,\phi)^{\mathsf{X}} = (\mathsf{S}_{g,\phi}(\mathsf{X}),\phi^{\mathsf{X}})$$

We have seen that

$$S_{g,\phi}(X) = g\phi(g)...\phi^{X-1}(g)$$

SDLP

Fix $G \rtimes Aut(G)$ and a pair (g, ϕ) . Suppose we are given $s_{g,\phi}(x)$ for some $x \in \mathbb{Z}$. The Semidirect Discrete Logarithm Problem is to recover x.

- Various works addressing SDPKE, an analogue of DHKE based on SDLP*
- Work linking SDLP to group actions and signatures in a potentially desirable fashion[†]
- $\cdot\,$ Recent fast algorithms for SDLP in certain classes of group ‡

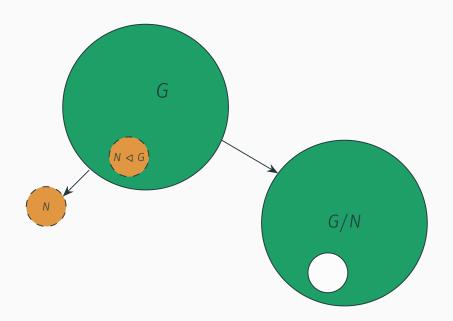
^{*}Habeeb et al. 2013.

⁺B. et al. 2023.

^{*}Mendelsohn et al. 2023; Imran and Ivanyos 2024.

Reduction to Simple Groups

Intuition



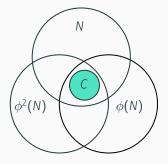
Imran and Ivanyos 2024, Theorem 3

Consider SDLP with respect to a pair $(g, \phi) \in G \rtimes Aut(G)$. Given a ϕ -invariant normal subgroup N of G, it suffices to solve an instance of SDLP in G/N and an instance of SDLP in N.

Given an oracle that solves SDLP in a simple group we are done if

- We can compute ϕ -invariant normal subgroups
- The recursion implied by the decomposition tool terminates in SDLP in simple groups

Computing the Invariant Subgroup



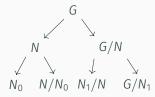
- We may assume there is a characteristic subgroup; and we know how to obtain a maximal normal subgroup (Ivanyos et al. 2001, Theorem 4)
- Imran and Ivanyos 2024 show that the intersection

$N \cap \phi(N) \cap \ldots \cap \phi^i(N) \cap \ldots$

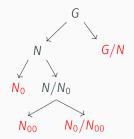
stabilises with a ϕ -invariant subgroup; not the trivial group if N contains a characteristic subgroup C

• We show that if such *C* exists, *every* maximal normal subgroup contains a characteristic subgroup!

Correspondence theorem: the subgroups of G/N are of the form N'/N where $N \subset N' \leq G$; and $(G/N)/(N'/N) \cong G/N'$



Correspondence theorem: the subgroups of G/N are of the form N'/N where $N \subset N' \triangleleft G$; and $(G/N)/(N'/N) \cong G/N'$



Simple Groups Analysis

Simple Groups

Theorem (Classification of Finite Simple Groups)

Every finite simple group is isomorphic to a member of one of four infinite classes:

- 1. the cyclic groups of prime order,
- 2. the alternating groups of degree at least 5,
- 3. the classical groups of Lie type,
- 4. the exceptional groups of Lie type

or one of 26 groups called the sporadic groups.

Corollary

The Semidirect Discrete Logarithm Problem (SDLP) in any finite group is **not a secure assumption** for quantum resistant primitives.

Let *G* be a cyclic group of prime order, then for any $g \in G$ and $\phi \in Aut(G)$ we have $\phi(g) = g^a$ for some $a \in \mathbb{N}$, so:

$$S_{g,\phi(x)} = g\phi(g)\cdots\phi^{x}(g) = g\cdot g^{a}\cdots g^{a^{x}} = g^{\sum_{i=0}^{x}a^{i}}$$

With a Quantum Computer we can recover $\sum_{i=0}^{x} a^{i}$ and solve the SDLP with basic algebra tricks.

Theorem (Classification of Finite Simple Groups)

Every finite simple group is isomorphic to a member of one of four infinite classes:

- 1. the cyclic groups of prime order,
- 2. the alternating groups of degree at least 5,
- 3. the classical groups of Lie type,
- 4. the exceptional groups of Lie type

or one of 26 groups called the **sporadic groups**.

Memo: Inn(G) := { $G \ni g \mapsto sgs^{-1} \in G \mid s \in G$ } is a normal subgroup of Aut(G).

Theorem (Kohl 2003)

If G is a non-abelian finite simple group, then for all $\phi \in Aut(G)$ there exists an integer $x \leq \log_2 |G|$ such that $\phi^x \in Inn(G)$.

Memo: by Imran and Ivanyos 2024, we can solve SDLP(G, ϕ) by solving most y instances of SDLP(G, ϕ^y).

Consequence

We can limit ourselves to solve SDLP for inner authormorphism, i.e. conjugations.

Linear Groups Analysis

SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider $G \leq GL_n(\mathbb{F})$ and $\phi \in Inn(G)$ such that $\phi(G) = SGS^{-1}$, then: $s_{G,\phi}(x) = G \cdot SGS^{-1} \cdot S^2GS^{-2} \cdots S^{x-1}GS^{-x+1} \cdot S^xGS^{-x} =$ $= GS \cdot GS \cdot GS \cdots SG \cdot S^{-x} = (GS)^x \cdot G \cdot S^{-x}$

So if we vectorize the matrices we get:

$$\operatorname{vec}(s_{G,\phi}(x)) = \operatorname{vec}\left((GS)^{x} \cdot G \cdot S^{-x}\right)$$
$$= \operatorname{vec}\left((GS) \cdot (GS)^{x-1} \cdot G \cdot S^{-(x-1)} \cdot S^{-1}\right)$$
$$= \operatorname{vec}\left((GS) \cdot s_{G,\phi}(x-1) \cdot S^{-1}\right)$$
$$= \left[(GS) \otimes S^{-1}\right] \operatorname{vec}(s_{G,\phi}(x-1))$$
$$...repeating the argument x - 1 more times...$$
$$= \left[(GS) \otimes S^{-1}\right]^{x} \operatorname{vec}(G)$$

By the provious discussion SDLP reduces to:

Matrix Power Problem

Given vectors $\mathbf{a}, \mathbf{b} \in V$ and a matrix $\mathbf{T} \in GL(V)$ find $x \in \mathbb{N}$ such that:

 $b=T^{\scriptscriptstyle X}\cdot a\;.$

Nice Fact: Thanks to **Imran and Ivanyos 2024**, **Kannan and Lipton 1986** the problem can be reduced to a discrete logarithm over GL(W) for W subspace of V.

Nice Fact: We can repeat the same arguments for projective linear groups $G \leq \mathbb{P}GL$.

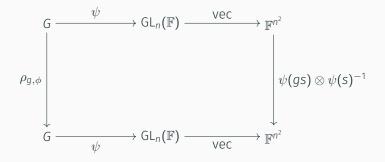
A *linear representation* (see Serre 1977) of a group *G* on a finite-dimensional vector space *V* is a non trivial group homomorphism

 $\psi: \mathsf{G} \to \mathsf{GL}(\mathsf{V}).$

We also consider *projective* linear representations, i.e., injective homomorphisms $G \to \mathbb{P}GL(V)$

Remark

For our case the codomain G is a simple group \implies the kernel ker(ψ) is trivial \implies ψ is injective, i.e. the representation is always faithful. If we have an efficiently computable linear representation $\psi: G \to GL(V)$ we move the problem to matrix groups (where we can solve it in Quantum Polynomial Time):



Where $\phi(g) = sgs^{-1}$ and $\rho_{g,\phi}(h) = g\phi(h)$

Simple Groups

Theorem (Classification of Finite Simple Groups)

Every finite simple group is isomorphic to a member of one of four infinite classes:

- 1. the cyclic groups of prime order,
- 2. the alternating groups of degree at least 5, <- Linear
- 3. the classical groups of Lie type, <- Linear
- 4. the **exceptional groups** of Lie type <- Linear

or one of 26 groups called the sporadic groups.

Like for DLOG with division over $\mathbb{Z}/p\mathbb{Z}$, this <u>do not directly</u> implies that SDLP is broken.

Since Lie groups and alternating groups are defined as (projective) linear groups the SDLP reduces to the following:

Constructive Recognition Problem, Babai and Beals 1999

Given a simple black-box group *G*, the problem require to find a computationally efficient isomorphism between *G* and an explicitly defined simple group.

Black-Box Groups

A **black-box group** $G \subset \{0,1\}^n$ is a group endowed with an oracle that performs the group operations, multiplication and inversion, and can check for the identity.

Theorem (Classification of Finite Simple Groups)

Every finite simple group is isomorphic to a member of one of four infinite classes:

- 1. the cyclic groups of prime order,
- 2. the alternating groups of degree at least 5, <- Jambor et al. 2013
- 3. the classical groups of Lie type,
- 4. the exceptional groups of Lie type

or one of 26 groups called the **sporadic groups**.

Simple Groups

Theorem (Classification of Finite Simple Groups)

Every finite simple group is isomorphic to a member of one of four infinite classes:

- 1. the cyclic groups of prime order,
- 2. the alternating groups of degree at least 5,
- the classical groups of Lie type, <- Dietrich et al. 2015, but we need to:
 - use number theory oracles <- Shor 1994
 - solve recognition problem from $\mathbb{P}SL(2,q)$

3.1 solved on quotient of matrix groups Babai et al. 2009

- 3.2 solved for any BBG, up to DLOG in Borovik and Yalçınkaya 2020
- 4. the exceptional groups of Lie type

or one of 26 groups called the sporadic groups.

Simple Groups

Theorem (Classification of Finite Simple Groups)

Every finite simple group is isomorphic to a member of one of four infinite classes:

- 1. the cyclic groups of prime order,
- 2. the alternating groups of degree at least 5,
- 3. the classical groups of Lie type,
- 4. the exceptional groups of Lie type

 $G_{2}(q), q \ge 3; F_{4}(q); E_{6}(q); {}^{2}E_{6}(q); {}^{3}D_{4}(q)^{*}; E_{7}(q); E_{6}(q)$

 ${}^{2}B_{2}(2^{2n+4}), n \ge 1; {}^{2}G_{2}(3^{2n+4}), n \ge 1; {}^{2}F_{4}(2^{2n+1}), n \ge 1$

In Kantor and Magaard 2013 and 2015 reduce the problem to $\mathbb{P}SL(2, q)$, using number theory oracles.

or one of 26 groups called the **sporadic groups** and ${}^{2}F_{4}(2)'$.

*solved if q is odd

Theorem (Classification of Finite Simple Groups)

Every finite simple group is isomorphic to a member of one of four infinite classes:

- 1. the cyclic groups of prime order,
- 2. the alternating groups of degree at least 5,
- 3. the classical groups of Lie type,
- 4. the exceptional groups of Lie type*

or one of 26 groups called the **sporadic groups** and ${}^{2}F_{4}(2)'$.

Sporadic Groups

There are 26 finite simple groups that are not part of the infinite families discussed earlier, plus the Tits Group ${}^{2}F_{4}(2)'$, The largest of the 26 *sporadic* groups is the Fischer-Griess monster group \mathbb{M} of cardinality:

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

 $pprox 2^{179.07}$

With the exception of six *pariahs*, all sporadic groups are part of the *happy family*, i. e., they are subquotients of \mathbb{M} . Additionally, the Tits group ${}^{2}F_{4}(2)'$ can be considered as part of this family since it is a maximal subgroup of the Fischer Group Fi₂₂.

- 1. Baby-Step Giant-Step algorithm can be adapted to SDLP, cutting the bit security of M to 89.6;
- 2. Actually if *G* is a sporadic group clearly we can restrict without loss of generality to

$$X \leq \max_{g \in G} (\operatorname{ord}(g)) \cdot \max_{\phi \in \operatorname{Aut}(G)} (\operatorname{ord}(\phi)) =: b(G);$$

- 3. For M we have $b(G) = 119^2 \approx 2^{14}$;
- 4. For G in the happy family $b(G) \le 2 \cdot 119^2 \approx 2^{15}$;
- 5. For G one of the six pariahs $b(G) = 67^2 \approx 2^{13}$;

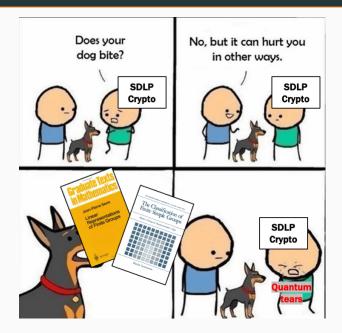
Theorem (Classification of Finite Simple Groups)

Every finite simple group is isomorphic to a member of one of four infinite classes:

- 1. the cyclic groups of prime order,
- 2. the alternating groups of degree at least 5,
- 3. the classical groups of Lie type,
- 4. the exceptional groups of Lie type*

or one of 26 groups called the **sporadic groups** and $25_{4}(2)$.

Meme



Thank you for your attention! eprint.iacr.org/2024/905

References

- B., Christopher et al. (2023). SPDH-Sign: towards Efficient, Post-quantum Group-based Signatures. Cryptology ePrint Archive, Paper 2023/595. https://eprint.iacr.org/2023/595. URL: https://eprint.iacr.org/2023/595.
- Babai, László and Robert Beals (1999). "A polynomial-time theory of black box groups I". In: London Mathematical Society Lecture Note Series, pp. 30–64.

Babai, László et al. (2009). **"Polynomial-time theory of matrix** groups". In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. STOC '09. Bethesda, MD, USA: Association for Computing Machinery, pp. 55–64.

References ii

- Borovik, Alexandre and Şükrü Yalçınkaya (2020). *Natural representations of black box groups encrypting* SL₂(F_q). arXiv: 2001.10292 [math.GR].
- Dietrich, Heiko et al. (2015). **"Effective black-box constructive recognition of classical groups".** In: *Journal of Algebra* 421, pp. 460–492.
- Habeeb, Maggie et al. (2013). "Public key exchange using semidirect product of (semi)groups". In: International Conference on Applied Cryptography and Network Security. Springer, pp. 475–486.
- Imran, Muhammad and Gábor Ivanyos (May 2024). "Efficient quantum algorithms for some instances of the semidirect discrete logarithm problem". In: Designs, Codes and Cryptography.
- Ivanyos, Gábor et al. (2001). "Efficient quantum algorithms for some instances of the non-abelian hidden subgroup problem".
 In: Proceedings of the 13th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 263–270.

References iii

- Jambor, Sebastian et al. (2013). **"Fast recognition of alternating** groups of unknown degree". In: Journal of Algebra 392, pp. 315–335.
- Kannan, Ravindran and Richard J. Lipton (1986). "Polynomial-time algorithm for the orbit problem". In: Journal of the ACM (JACM) 33.4, pp. 808–821.
- Kantor, W.M. and K. Magaard (2013). "Black box exceptional groups of Lie type". In: Trans. Amer. Math. Soc. 365.9, pp. 4895–4931.
- Kohl, Stefan (2003). A bound on the order of the outer automorphism group of a finite simple group of given order. Available at

https://stefan-kohl.github.io/preprints/outbound.pdf.

Mendelsohn, Andrew et al. (2023). A Small Serving of Mash: (Quantum) Algorithms for SPDH-Sign with Small Parameters. Cryptology ePrint Archive, Paper 2023/1963. URL: https://eprint.iacr.org/2023/1963.

Serre, Jean-Pierre (1977). *Linear Representations of Finite Groups*. Vol. 42. Graduate Texts in Mathematics. Springer.

Shor, Peter W. (1994). "Algorithms for guantum computation: discrete logarithms and factoring". In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134.