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Introduction to SDLP



Motivation

PQC Candidates Classical Crypto
Lattices Cyclic groups

Linear codes Residue groups
Isogenies
Multivariate

Can we study cryptography in more complicated group structures?

2



Definitions

Semidirect Product
Let G be a finite group and Aut(G) its group of automorphisms. We
define G⋊ Aut(G) to be the group of pairs in G× Aut(G) equipped
with the following multiplication:

(g, ϕ)(h, ψ) := (gϕ(h), ϕ ◦ ψ)

G Aut(G)

G

Notice

(g, ϕ)2 = (gϕ(g), ϕ2)
(g, ϕ)3 = (g, ϕ)(gϕ(g), ϕ2)

= (gϕ(g)ϕ2(g), ϕ3)
(g, ϕ)4 = (g, ϕ)(gϕ(g)ϕ2(g), ϕ3)

= (gϕ(g)ϕ2(g)ϕ3(g), ϕ4)
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Definitions

Semidirect Exponentiation
Fix (g, ϕ) ∈ G⋊ Aut(G). Define sg,ϕ : Z → G to be the group element
such that

(g, ϕ)x = (sg,ϕ(x), ϕx)

We have seen that

sg,ϕ(x) = gϕ(g)...ϕx−1(g)

SDLP
Fix G⋊ Aut(G) and a pair (g, ϕ). Suppose we are given sg,ϕ(x) for
some x ∈ Z. The Semidirect Discrete Logarithm Problem is to
recover x.
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Background

• Various works addressing SDPKE, an analogue of DHKE based on
SDLP*

• Work linking SDLP to group actions and signatures in a
potentially desirable fashion†

• Recent fast algorithms for SDLP in certain classes of group‡

*Habeeb et al. 2013.
†B. et al. 2023.
‡Mendelsohn et al. 2023; Imran and Ivanyos 2024.
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Reduction to Simple Groups



Intuition

G

N ◁ G

N
G/N
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The Decomposition Tool

Imran and Ivanyos 2024, Theorem 3
Consider SDLP with respect to a pair (g, ϕ) ∈ G⋊ Aut(G). Given a
ϕ-invariant normal subgroup N of G, it suffices to solve an instance
of SDLP in G/N and an instance of SDLP in N.

Given an oracle that solves SDLP in a simple group we are done if

• We can compute ϕ-invariant normal subgroups
• The recursion implied by the decomposition tool terminates in
SDLP in simple groups
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Computing the Invariant Subgroup

ϕ(N)

N

ϕ2(N)
C

• We may assume there is a
characteristic subgroup; and we
know how to obtain a maximal
normal subgroup (Ivanyos et al.
2001, Theorem 4)

• Imran and Ivanyos 2024 show that
the intersection

N ∩ ϕ(N) ∩ ... ∩ ϕi(N) ∩ ...

stabilises with a ϕ-invariant
subgroup; not the trivial group if N
contains a characteristic subgroup C

• We show that if such C exists, every
maximal normal subgroup contains
a characteristic subgroup!
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Recursion to Simple Groups

Correspondence theorem: the subgroups of G/N are of the form N′/N
where N ⊂ N′ ≤ G; and (G/N)/(N′/N) ∼= G/N′

N0 N/N0 N1/N G/N1

N G/N

G
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Recursion to Simple Groups

Correspondence theorem: the subgroups of G/N are of the form N′/N
where N ⊂ N′ ◁ G; and (G/N)/(N′/N) ∼= G/N′

N00 N0/N00

N0 N/N0

N G/N

G
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Simple Groups Analysis



Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type

or one of 26 groups called the sporadic groups.

Corollary
The Semidirect Discrete Logarithm Problem (SDLP) in any finite
group is not a secure assumption for quantum resistant primitives.
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Cyclic Groups

Let G be a cyclic group of prime order, then for any g ∈ G and
ϕ ∈ Aut(G) we have ϕ(g) = ga for some a ∈ N, so:

sg,ϕ(x) = gϕ(g) · · ·ϕx(g) = g · ga · · ·ga
x
= g

∑x
i=0 a

i
.

With a Quantum Computer we can recover
∑x

i=0 ai and solve the
SDLP with basic algebra tricks.

12



Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type

or one of 26 groups called the sporadic groups.
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Reduction to Inner Automorphisms

Memo: Inn(G) := {G 3 g 7→ sgs−1 ∈ G | s ∈ G} is a normal subgroup
of Aut(G).

Theorem (Kohl 2003)
If G is a non-abelian finite simple group, then for all ϕ ∈ Aut(G)
there exists an integer x ≤ log2 |G| such that ϕx ∈ Inn(G).

Memo: by Imran and Ivanyos 2024, we can solve SDLP(G, ϕ) by solving
most y instances of SDLP(G, ϕy).

Consequence
We can limit ourselves to solve SDLP for inner authormorphism, i.e.
conjugations.
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Linear Groups Analysis



SDLP on Matrix Groups (Imran and Ivanyos 2024)

Consider G ≤ GLn(F) and ϕ ∈ Inn(G) such that ϕ(G) = SGS−1, then:

sG,ϕ(x) = G · SGS−1 · S2GS−2 · · · Sx−1GS−x+1 · SxGS−x =
= GS · GS · GS · · · SG · S−x = (GS)x · G · S−x

So if we vectorize the matrices we get:

vec(sG,ϕ(x)) = vec
(
(GS)x · G · S−x

)
= vec

(
(GS) · (GS)x−1 · G · S−(x−1) · S−1

)
= vec

(
(GS) · sG,ϕ(x− 1) · S−1

)
=

[
(GS)⊗ S−1

]
vec(sG,ϕ(x− 1))

...repeating the argument x− 1 more times...

=
[
(GS)⊗ S−1

]x vec(G)
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Matrix Power Problem

By the provious discussion SDLP reduces to:

Matrix Power Problem
Given vectors a,b ∈ V and a matrix T ∈ GL(V) find x ∈ N such that:

b = Tx · a .

Nice Fact: Thanks to Imran and Ivanyos 2024, Kannan and Lipton
1986 the problem can be reduced to a discrete logarithm over
GL(W) for W subspace of V.

Nice Fact: We can repeat the same arguments for projective linear
groups G ≤ PGL.
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Linear Representations for Simple Groups

A linear representation (see Serre 1977) of a group G on a
finite-dimensional vector space V is a non trivial group
homomorphism

ψ : G→ GL(V).

We also consider projective linear representations, i.e., injective
homomorphisms G→ PGL(V)

Remark
For our case the codomain G is a simple group =⇒
the kernel ker(ψ) is trivial =⇒
ψ is injective, i.e. the representation is always faithful.
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Combination of the Frameworks

If we have an efficiently computable linear representation
ψ : G→ GL(V) we move the problem to matrix groups (where we can
solve it in Quantum Polynomial Time):

G GLn(F) Fn2

G GLn(F) Fn2

ψ vec

ρg,ϕ ψ(gs)⊗ ψ(s)−1

ψ vec

Where ϕ(g) = sgs−1 and ρg,ϕ(h) = gϕ(h)
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5, <- Linear
3. the classical groups of Lie type, <- Linear
4. the exceptional groups of Lie type <- Linear

or one of 26 groups called the sporadic groups.

Like for DLOG with division over Z/pZ, this do not directly implies
that SDLP is broken.
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Constructive Recognition Problem

Since Lie groups and alternating groups are defined as (projective)
linear groups the SDLP reduces to the following:

Constructive Recognition Problem, Babai and Beals 1999
Given a simple black-box group G, the problem require to find a
computationally efficient isomorphism between G and an explicitly
defined simple group.

Black-Box Groups
A black-box group G ⊂ {0, 1}n is a group endowed with an oracle
that performs the group operations, multiplication and inversion,
and can check for the identity.
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5, <- Jambor et al. 2013
3. the classical groups of Lie type,
4. the exceptional groups of Lie type

or one of 26 groups called the sporadic groups.
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type, <- Dietrich et al. 2015, but we
need to:

• use number theory oracles <- Shor 1994
• solve recognition problem from PSL(2, q)

3.1 solved on quotient of matrix groups Babai et al. 2009
3.2 solved for any BBG, up to DLOG in Borovik and Yalçınkaya 2020

4. the exceptional groups of Lie type

or one of 26 groups called the sporadic groups.
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type

���HHHG2(q),q ⩾ 3;���HHHF4(q);���HHHE6(q);���HHH
2E6(q); 3D4(q)*;���HHHE7(q);���HHHE8(q)

�����XXXXX
2B2

(
22n+1

)
,n ⩾ 1;�����XXXXX

2G2
(
32n+1

)
,n ⩾ 1; 2F4

(
22n+1

)
,n ⩾ 1

In Kantor and Magaard 2013 and 2015 reduce the problem to
PSL(2,q), using number theory oracles.

or one of 26 groups called the sporadic groups and 2F4(2)′.
*solved if q is odd 23



Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type*

or one of 26 groups called the sporadic groups and 2F4(2)′.
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Sporadic Groups



Sporadic Groups

There are 26 finite simple groups that are not part of the infinite
families discussed earlier, plus the Tits Group 2F4(2)′, The largest of
the 26 sporadic groups is the Fischer-Griess monster groupM of
cardinality:

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

≈ 2179.07

With the exception of six pariahs, all sporadic groups are part of the
happy family, i. e., they are subquotients ofM. Additionally, the Tits
group 2F4(2)′ can be considered as part of this family since it is a
maximal subgroup of the Fischer Group Fi22.
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Breaking Sporadic Groups

1. Baby-Step Giant-Step algorithm can be adapted to SDLP, cutting
the bit security ofM to 89.6;

2. Actually if G is a sporadic group clearly we can restrict without
loss of generality to

x ≤ max
g∈G

(ord(g)) · max
ϕ∈Aut(G)

(ord(ϕ)) =: b(G) ;

3. ForM we have b(G) = 1192 ≈ 214;
4. For G in the happy family b(G) ≤ 2 · 1192 ≈ 215;
5. For G one of the six pariahs b(G) = 672 ≈ 213;
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Simple Groups

Theorem (Classification of Finite Simple Groups)
Every finite simple group is isomorphic to a member of one of four
infinite classes:

1. the cyclic groups of prime order,
2. the alternating groups of degree at least 5,
3. the classical groups of Lie type,
4. the exceptional groups of Lie type*

or one of 26 groups called the sporadic groups and����XXXX2F4(2)′.
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Meme
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Questions?

Thank you for your attention!
eprint.iacr.org/2024/905
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