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In realms of ciphered lore, where secrets dwell,
In realms where quantum linger, truths to tell,
Signatures emerge, like echoes in the night,
Unveiling tales of servers, wrapped in cryptic light.

Cryptographic group actions, intricate and wise,
Weave the fabric of protection, where danger lies,
In graphs they dance, their steps a subtle art,
Guarding realms of knowledge, shielding every part.

Through sigma protocols, our stories intertwine,
In this realm of signatures, where the powers align,
In words simulated, whispered on the wind,
May our isomorphisms be safe, as destinies chime.

And lo, code equivalences, bound in sacred ties,
Unlock the paths to linear codes, where wisdom lies,
They bridge the worlds of algorithms and keys,
Unraveling the mysteries that lie beneath the bits.

Yet behold, threshold signatures, a potent spell,
Where trust is shared, secrets they compel,
A fellowship united, wielding strength untold,
In unity, they conquer, forging futures bold.

O Lord of Groups, in your poetic grace,
Let signatures guide us, in this digital space,
May zero knowledge shield us from the dark,
And preserve our identities, like an elven arc.

Thus, we venture forth, with code as our guide,
Seeking truth and efficiency, side by side,
In this tapestry of cryptographic might,
May our actions shine, forever in the light.
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INTRODUCTION

Thanks to the progressive digitalization any angle of the world is interconnected
and more digital institution, services, assets are accessible each day. In this dig-
ital world the need for secure, reliable and flexible authentication mechanisms
has become paramount. In particular digital signatures serve as a vital crypto-
graphic tool to ensure data integrity, authenticity, and non-repudiation.

However, by using the 1994 Shor’s algorithm [Sho94], conventional hard
problems, factorization and discrete logarithm, used for digital signatures, can
be broken in polynomial times using quantum computers.

Post-quantum cryptography tries to counter this by developing cryptographic
schemes based on problems resistant to attacks by both classical and quantum
computers.

The NIST Calls Recognizing the threat that quantum computers advance-
ment represent for classical cryptography, the National Institute of Standards
and Technology (NIST) opened a Post-Quantum Cryptography Standardization
process in December 2016 [NIS17]. This pioneering effort aims to standardize
a new suite of resistant algorithms that will secure the digital infrastructure in
a post-quantum era. The process involved extensive research, public submis-
sions, and evaluations by researchers, universities and private companies from
all around the world.

After 5 years of proposal and discussions in the cryptographic community
NIST has selected four schemes for standardization: three lattice based (1 KEM
and 2 signatures) and one hash-based (signature) [NIS22b].

Even if lattices assumptions have been proven resilient and reliable, a se-
cure post-quantum digital infrastructure should not rely only on them. NIST
considers the selected schemes alone inadequate for the long term goal of stan-
dardization, so it is performing an additional fourth round focused on code-based
Public-key Encryption [NIS22a; Ara+20; Agu+20; Alb+20] and has opened an
“on ramp” call for signature schemes not based on ideal lattices [NIS23].

Code-based Cryptography Coding theory is a branch of mathematics merg-
ing algebra and information theory, with the goal of correcting errors happening
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Introduction

in telecommunications. First results on the discipline traces back to the 60’s,
with Shannon’s pivotal work on capacity. Now coding theory applications are
transversal, from classical noisy reduction to network coding [SK11], reliable
data storage with NANDs or with DNA [EZ17], and also in digital security.
Code-based cryptography is the second largest area of research and surely the
one with best established cryptanalysis records. The first cryptosystem built on
error-correcting codes is due to McElience, still undamaged in its first instanti-
ation based on Goppa codes [Alb+20].

Even if generally secure and efficient, there are some drawbacks for this and
other cryptosystems in the same family. They have by far the largest public key
sizes and usually rely on trapdoors, that makes difficult the security evaluation
of newly proposed schemes. A new approach started in [BMPS20] tries to solve
these complications by exploiting the hardness of finding equivalence of codes
instead of the decoding random ones. Code equivalence based signatures have
best overall public key sizes, does not rely on trapdoors and the operations used
can be modeled as group actions.

Group Actions use for Cryptographic Purposes Well known by group
theorist and used in several branches of algebra (also with applications in theo-
retical physic), group actions are already in use in cryptography, even if without
awareness, in relation to the discrete logarithm problem.

With the incoming threat of quantum computers over classical cryptography,
group actions open the way to new secure and efficient primitives. Introduced to
the community thanks to isogeny-based schemes, they immediately got traction
thanks to the promise of getting back the flexibility of group based constructions.

Recently Code Equivalence and other Isomorphism Problems have also been
(re)discoverd as an alternative way to define (non abelian) group actions suitable
for cryptographic use, but relying on more established assumptions.

This triggered the interest of the community in studying cryptographic group
actions within a more general framework. Not only to improve current schemes
and understand their limits, but also to get back functionalities missing in the
post-quantum scenario, like ring signatures [BKP20] and, in particular, thresh-
old signatures.

Threhsold Signatures A pT,Nq-threshold digital signature scheme is a pro-
tocol designed to distribute the right to sign messages to any subset of at least
T out of N key owners. Then, any subset of malicious users of size up to the
threshold T won’t be able to forge a valid signature alone. A key point in most
threshold digital signature schemes is compatibility with existing schemes: even
though the key generation and signing algorithms are multi-party protocols,
in fact, the verification algorithm is identical to that of an existing signature
scheme, usually referred to as the “centralized” scheme.

The history of threshold signatures dates back to [GJKR96], that propose a
scheme for the parameters pT ` 1, 2T ` 1q, and only in 2016 a proper general
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Introduction

pT,Nq-threshold scheme was proposed in [GGN16].
Recently the design and the standardization of Multi-Party Threshold Schemes

received much more interest, even from NIST ([BDV]), thanks to the multiple
applications of these schemes. Threshold signatures have the potential to impact
several crucial aspects of today’s digital landscape, including:

´ Enhancing more fine-grained control of secret assets: secrets or the
rights over an asset can be shared and stored in multiple locations or by
different users, avoiding single points of failure.

´ Implementation by design of Access Control policies: both between
administrators granting access or users identifying themselves.

´ Thanks to the interchangeability of threshold signatures with centralized
one they can achieve both compatibility with conventional schemes in
use and privacy preserving properties.

´ Secure Multi-Party Computation; the computations on shared data,
preserving shares privacy, is closely related with threshold signatures.
MPC techniques can be used to design shared signatures, but also these
can be required to prove integrity during protocols multiparty executions.

´ Implement Distributed Ledger Technologies: via threshold signatures
multiple parties, such as members of a multi-signature wallet, can collec-
tively sign transactions without exposing sensible information, allowing
the creation of distributed wallets on any blockchain network. This is
used also, for instance, by users willing to store the rights on their assets
in multiple locations to avoid stealing of credentials.

Post-Quantum Scenario and Group Actions Recently, driven by both
the NIST call for Post-Quantum Standardization [NIS17] and the call for Multi-
Party Threshold Schemes [BDV], many researchers have started to wonder
whether it could be possible to design post-quantum versions of threshold digital
signature schemes.

Since most of the existing literature for threshold schemes rely on the diffi-
culty of the Discrete Logarithm Problem, new methods for post-quantum cryp-
tography have to be investigated. In [CS19], the (round 2) proposals (particu-
larly the UOV ones) of the standardization process were analyzed in order to
determine ways to define threshold variants, principally exploiting LSSS-based
MPC protocols, however, at the present time, this approach remains only the-
oretical.

Instead, a solution has been found in 2020 for cryptographic cyclic group
actions and applied to isogeny-based schemes [DM20]. We give here a brief
recap of the results that followed that paper.

´ In [DM20] they proposed a way to apply a group actions in a threshold like
way by using the classical Shamir Secret sharing on a group action induced
by a cyclic group. They showed how to apply this for an El Gamal like
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encryption schemes and a signature based on Σ-protocols proving their
simulatability, however this schemes are only secure in the honest-but-
curious model and miss a distributed key generation mechanisms.

´ In [CS20] they showed a way to combine the use of zero-knowledge proofs
and replicated secret sharing to obtain a secure threshold signature scheme
from isogeny assumptions. The work is an important step for the research
and can be extended to more general group actions, but the main draw-
backs are the number of rounds necessary to implement replicated secret
sharing and the important slow down caused by the addition ZKP re-
quired.

´ In [BDPV21] they showed how to define a distributed key generation algo-
rithm by using a new primitive called piecewise verifiable proofs; proving
their security in the quantum random oracle model.

´ In [CM22] they incorporate the techniques from [CS20; BDPV21; DM20]
to have actively secure attributed based encryption and signature schemes,
in which threshold signature are a particular case. Again the main draw-
backs are the number of ZKPs used.

All these constructions rely on commutative group actions with peculiar
structures, so essentially on isogeny based schemes like [DG19; BKV19], that
are not under submission to the NIST call [NIS23]. Thus it makes sense to
focus on more general group actions, to obtain threshold schemes compatible
with signatures based on isomorphism problems submitted to the call [Bal+23b;
Cho+23; Bla+23].

In [BBMP23] they leveraged previous ideas to apply this constructions also
to the case of non-abelian group actions avoiding excessive us of ZKPs. This
last preprint is a result of my thesis work, thus Chapter 4 can be seen as detailed
and extended version of that article.

Contributions and Future Directions

As explained, group actions are a growing trend in post quantum cryptography,
so here we give a detailed overview of all the mathematics requirements nec-
essary to instantiate a secure post-quantum digital signature. To do that we
bridge between established isogeny based literature and more recent one relative
to isomorphism problems.

When going through the optimizations we insert here a new model for the
base identification protocol, which uses a general graph. The new framework
comprehends both established ones, like the fixed-weight, and new ones, based
on multiparty computations, hypercube shaped commitments and faster signa-
ture verification. Some of the last ones have also been published, as preprints,
in [BPS23] (and concurrently in [Jou23]). Due to the current characteristics of
in-use group actions, current signature schemes benefits only partially by the
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new constructions derived from the general graph framework, however the work
is still open in 3 directions.

1. Searching for new graph topologies that lead to efficient schemes.

2. Categorize the most efficient scheme for any use case with respect to sizes
of group and set elements.

3. Finding general bounds, which considers more complex structures, e.g.
seed trees, generalizing [BGZ23].

In Chapter 3 we give a general insight on code equivalence problems, a new
group action based primitive. Then we group together the relevant literature
on the topics, both from Hamming and rank metric, discussing differences and
similarity. Then we explain how they are actually rendered to signatures with
tailored optimizations (LESS, MEDS [Bal+23b; Cho+23]). These signatures
(and also all the other sharing the same design) are then rendered to a threshold
version via a construction designed for non-abelian group actions, which does
not make extensive use of non-interactive zero-knowledge proofs. Differently
for previously proposed distributed schemes cited before these one have direct
and practical applications for signatures submitted to the NIST call for post-
quantum digital signatures [NIS23], not only LESS and MEDS cited before,
but also ALTEQ [Bla+23]. As in [BBMP23] we then instantiate them for code
equivalence based signatures, proving them feasible.

We also highlight possible future direction for more efficient threshold sig-
natures based on linear secret sharing. One possibility is the use of the con-
struction for cyclic group actions described in [DM20] combined with the new
construction, that requires additional study to properly exploit the efficiency
of linear secret sharing. The other one is instead tailored for LESS and use a
different representation for the group action. At the moment there is no secure
instantiation of this idea, since all the previous trials leak sensible information,
still we point out the core idea and possible future directions.

Outline We fix the notation in the next section. In Chapter 1 we introduce
the concepts of digital signatures, identification protocol and explain how they
are related via the Fiat Shamir transform. In Section 1.2 we also give some
examples of post quantum signatures derived from identification protocols. In
Chapter 2 we describe cryptographic group action properties, then in Section 2.2
we see how to derive a signature from any group action and how to optimize
it (Section 2.3), also following the . In Chapter 3 we recall some coding theory
concepts, then explain the code equivalence problem for both the Hamming and
rank metric. Then we see how LESS and MEDS are instantiated in Section 3.4.
Finally in Chapter 4 we explain how to render the signature in Section 2.2 to
a threshold signature following [BBMP23]. We also briefly explain a different
possible approach for cyclic group actions in Section 4.3.
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Introduction

Notation

To ease the reading of the thesis we fix here all the notation used. With the
goal of having a self contained notation section, we briefly anticipate some el-
ements that be defined later in details. We try to make it consistent with the
recent literature on group actions, isogeny-based cryptography and code-based
cryptography.

Elementary Notation We mean the sets by capital letters X,G, ..., the el-
ements by small letters x, g, .... We denote the power set of a set A as 2A,
i.e.

2A :“ t B | B Ď Au ;

while for any B P 2A the complementary is labelled as Bc :“ AzB. The collec-
tion of maximal elements of an ordered set O is labeled O`. The set N represents
the positive integers 1, 2, 3, ... while for any two integers a ď b we indicate ra, bs
as the interval of integers a ď x ď b : t a, a` 1, ..., b´ 1, bu.

Algebra When not specified we use the multiplicative notation ¨ for groups
and the identity element be indicated by the letter e. The group action be
indicated by the ‹ symbol and be applied on the left. The symmetric group
on a set of size n is labeled Sn :“ tϕ : r1, ns Ñ r1, ns | ϕ invertibleu. K is
a general field and K˚ its multiplicative group, while Fq indicates the finite
field with q elements and Q the field of rationals. We use instead boldface
letters G,v, . . . to denote vectors and matrices. Given a matrix A over K, we
write ai to indicate its i-th column. The general linear group formed by the
non-singular k ˆ k matrices over K is indicated as GLkpKq, if the definition
filed is clear by the context we omit it. For an ordered set J , we write AJ

to indicate the matrix formed by the columns of A that are indexed by the
elements in J ; equivalent notation is adopted for vectors. The identity with size
k is indicated as Ik, while 0 denotes the null-matrix (its dimensions always be
clear from the context). A systematic for of a matrix G be indicated by SFpGq.
We denote by Sn the symmetric group on n elements, and consider its elements
as permutations of n objects. We represent permutations as n-tuples of the form
π :“ ti1, i2, ¨ ¨ ¨ , inu, so that for j “ 1, ¨ ¨ ¨ , n, it holds that πpjq “ ij . Given a
matrix A, we write πpAq to indicate the matrix resulting from the action of π on
the columns of A. We denote by Monon the set of monomial transformations,
that is, transformations of the form µ :“ pπ,vq with π P Sn and v P F˚n

q , acting
as follows

µpAq “ µ
`

pa1, ¨ ¨ ¨ ,anq
˘

“ pv1aπ´1p1q, v2aπ´1p2q, ¨ ¨ ¨ , vnaπ´1pnqq.

Cryptography By negl : N Ñ R we mean a negligible function, i.e. a function
such that for every positive polynomial pp¨q there exists an integer Np ą 0 so
that for all x ą Np:

|neglpxq| ă
1

ppxq
.
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Hash functions, i.e. maps t0, 1u˚ Ñ t0, 1u˚ easy to evaluate but with strong
collision resistance, are labeled H. The letter E means an elliptic curve and the
defining field be clear from the context. The pair public and private key are
labelled as ppk, skq, the signature by sig, or σ. Bytes (8 bits) are labeld as B
or Bytes, while KiBytes mean 210 Bytes. By Mcyc. we mean megacycles. By
lexicographic order for sequences of symbols in an ordered set pX,ăq we mean
the order ălex such that

t ălex s ðñ Di s.t. tj “ sj for all j ă i and ti ă si .

A algorithm is labeled as probabilistic polynomial-time if there exists a polyno-
mial pp¨q such that for each input x P t 0, 1u˚ the computation terminates in at
most pp|x|q times and uses at most pp|x|q independent random bits.

In this thesis, we assume the readers have a foundational understanding of
concepts in linear algebra, commutative algebra, algebraic cryptography and
group theory. Readers encountering any gaps in their knowledge in these areas
are encouraged to refer to the books [Sil09], [Lan12], [LN94].

Academic Year 2022-23 x



CHAPTER

ONE

SIGNATURES AND FIAT SHAMIR

In this chapter we introduce the basic definitions for signature schemes, identi-
fication protocols and their security requirements. Then we show how to render
a zero knowledge proof to a secure digital signature scheme, with particular
attention to the quantum random oracle model. Then we make some relevant
examples of post-quantum primitives derived from Σ-protocols, all submitted
to the NIST call for standardization.

First of all we lie here the definition of digital signature, with its security
requirements.

Definition 1.1 (Signature scheme). A digital signature scheme is a tuple of four
probabilistic polynomial-time algorithms DS “ pDS.Setup, DS.KeyGen, DS.Sign,
DS.Verifyq, such that:

´ DS.Setupp1λq Ñ pp, on input the security parameter λ it returns public
parameters for the scheme.

´ DS.KeyGenpppq Ñ ppk, skq, on input the public parameters pp returns a
pair of public and secret keys.

´ DS.Signpsk,mq Ñ sig, on input the secret key and a message m outputs a
signature sig.

´ DS.Verifyppk,m, sigq Ñ 1{0, on input the public key, the message and the
signature accepts (1) or reject (0) them.

A digital signature scheme needs to be correct, i.e. a signature honestly
generated by using the 3 initial algorithms should always be accepted with
probability 1, and unforgeable. Intuitively unforgeable means that a non hon-
est party should not be able to forge a valid signature, but as for encryption
schemes, there are several models for the adversary capabilities and objectives.
We consider here the most desirable one: the Existential Unforgeability under
Chosen-Message Attacks (EUF-CMA) from [GMR88].

1



Section 1.1 Signatures and Fiat Shamir

Definition 1.2. A digital signature DS is secure in the EUF-CMA if for any
probabilistic polynomial-time adversary Evl that is allowed to:

1. Query a key generation oracle that runs DS.Setup and DS.KeyGen for the
public parameters pp and the public key pk (but not the private key);

2. Perform a polynomial number of query to a signing oracle that on chosen
messages mi obtaining pairs of valid signatures pmi, sigiq;

it is not able to obtain a valid signature on a non queried message, i.e.

P
„

DS.Verifyppk,m˚, sig˚
q “ 1

ˇ

ˇ

ˇ

ˇ

m˚, sig˚
Ð Evl ,

m˚ ‰ mi @i .

ȷ

ď neglpλq (1.1)

There is a stronger variant of this model, called stronger Existential Un-
forgeability under Chosen-Message Attacks (sEUF-CMA) in which we allow the
attacker to also output a signature on a previously queried message, as long
as the outputted signature sig˚ is different from sigi for all mi “ m˚. Instead
the easier security model is the Existential Unforgeability under No-Message
Attacks (EUF-NMA), where the adversary cannot perform adaptive queries on
messages.

1.1 Identification Protocols

Modern cryptography does not restrict it self to encryption mechanism and
signature schemes, but extends its capabilities to a range of different possible
uses. One of them consisting in proving that a particular statement is true,
possibly without disclosing any sensible information during the process.

A groundbreaking work in this direction was the article “The knowledge
complexity of interactive proof-systems”, form Goldwasser, Micali, and Rack-
off [GMR19], in which they introduced the concept of Zero-Knowledge Proof,
catching the essential ideas behind proofs that disclose only the veridicity of
a statement. This notion had in the years an incredible amount of practical
applications, from e-voting to digital identity, but also a close relation with
Complexity Theory.

We start with a more abstract approach to the definition, following the
style of [AB09], then we move to the practical uses and security results of our
interest, using a notation more inline with the practical flavor that can be found
in nowadays papers.

Definition 1.3. The language L Ă t 0, 1u˚ have probabilistic identification
protocol with k rounds if there exists a probabilistic polynomial time algorithm
V that can have a k-rounds interaction with the function P : t 0, 1u˚ Ñ t 0, 1u˚,

Academic Year 2022-23 2



Section 1.1 Signatures and Fiat Shamir

i.e. they can produce a transcript:

a1 “ V pxq

a2 “ P px, a1q

. . .

ak´1 “ V px, a1, ..., ak´2q

ak “ P px, a1, ..., ak´1q ;

from which V computes a final binary value V px, a1, ..., akq to accept or not the
transcript. The interaction has the two additional properties:

´ (Completeness) for all x P L exists functions P1, ..., Pk so that V accept
the transcripts with probability more than 2{3.

´ (Soundeness) for all x R L cannot exists functions P1, ..., Pk so that V
accept the transcripts with probability more than 1{3.

We define as IPrks the languages having a probabilistic identification protocol
with k rounds, and as IP the languages having a probabilistic identification
protocol with a finite number of rounds, i.e.

Ť

ką0 IPrks.

Here the function P represent the role of a Prover that tries to convince a
Verifier V that the string x is in the language L. There are a lot of interesting
observation that can be done from this definition.

´ The value 2{3 and 1{3 can be substituted by any other values in the
interval p0, 1q, since by repeating the same protocol a polynomial number
of times the completeness probability increase and the soundness decrease.

´ We can replace the constant 2{3 with 1 in the completeness definition and
we would still get the same set IP. This can be seen as a consequence of
an important result shown later in Theorem 1.4.

´ Instead replacing the constant 1{3 with 1 in the soundness definition would
result in the collapse of the class to NP since the protocol would be deter-
ministic.

´ With this current definition the Verifier has access to a private random
tape that the Prover cannot access during its calculation. Allowing the
Prover to see them would be equivalent to force the Verifier to only send
random bits and nothing more. This protocols in this particular class are
called Arthur-Merlin proofs or Public-Coin proofs. They are indicated as
AMrks.

Doing a detailed discussion on all the rich computational theory of the in-
teractive protocols is out of the scope of this document, however I would like
to still give you a glimpse of its most unpredictable results. First of all even if
the structure of probabilistic interactive protocol has a very basic definition is
extremely powerful, in fact we have that:
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Section 1.1 Signatures and Fiat Shamir

Theorem 1.4 ([Sha92]). The class IP is equal to the class PSPACE, i.e. all the
languages that can be decided by a algorithm in polynomial space (even if with
umbounded computational time) have a probabilistic identification protocol with
finite rounds.

With respect to Arthur-Merlin proofs we have a nice property: using any
constant k ě 2 number of rounds does not add any language to the class,
actually:

AMrks “ AMr2s “: AM . (1.2)

Moreover it may seem that allowing the Verifier to keep its coins private adds
significant power to interactive proofs, but it does not, in fact in [GS86] they
proved that:

Theorem 1.5. For every k : N Ñ N with kpnq computable in a polynomial time
with respect to n we have:

IPrks Ď AMrk ` 2s

1.1.1 3 Pass Protocols

We focus now in the main tool for our thesis: the 3-pass protocol, a special
type of public-coin three move interactive protocol for an NP relation R Ă

t0, 1u˚ ˆ t0, 1u˚. We recall that R is an NP relation if:

´ for any px,wq there is a polynomial time algorithm that decides if px,wq P

R;

´ for all relations in R the length of w is polynomial in the length of x.

We refer to x as the statement and to w as the witness. The language LR Ă

t0, 1u˚ is the set of statements x such that there exists a witness w with px,wq P

R. The decision problem for an NP relation asks, given a statement x, to decide
if x P LR, while the search one requires to find this witness, if it does exists.

For the definitions concerning this part of the thesis we are using [BKP20]
as reference. The algorithms here have black box access to a random oracle
DELPHIrnd that models an hash function, i.e. an oracle that answer randomly
to each new query, but has always the same output given the same input.

Definition 1.6. A 3-pass protocol for the NP relation R is a tuple of four
probabilistic polynomial-time algorithms Π “ pP1, P2, V1, V2q where P1, P2 (the
Prover) share the states, while V2 (Verifier) is deterministic. The protocol flow
goes as following.

´ The Prover on input px,wq P R runs com Ð PDELPHIrnd
1 px,wq, we call this

initial output the commitment. The commitment lie in the commitments
set COM.

´ The Verifier on input com evaluate the random string ch Ð V DELPHIrnd
1 pcomq

called challenge. The challenge lie in the challenges set ch.
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Section 1.1 Signatures and Fiat Shamir

´ The Prover using the challenge evaluate resp Ð PDELPHIrnd
2 pch, x,wq, called

the response. In some situation it use useful to allow a special character K

denoting an abortion. The response lie in the responses set RESP Y t Ku.

´ The Verifier finally evaluate a bit output from V2px, com, ch, respq used to
accept or reject the proof. An accepted tuple pcom, ch, respq is called a
valid transcript for x.

The protocol need to satisfy the completeness with abort property: for all
px,wq P R the last deterministic algorithm V2px, com, ch, respq accepts with
probability 1 when com Ð PDELPHIrnd

1 px,wq, ch Ð V DELPHIrnd
1 pcomq and resp Ð

PDELPHIrnd
2 pch, x,wq (with resp ‰K). To have a meaningful protocol we should

also ask also that the aborting probability

P

»

–resp “K

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

com Ð PDELPHIrnd
1 px,wq,

ch Ð V DELPHIrnd
1 pcomq,

resp Ð PDELPHIrnd
2 pch, x,wq

fi

fl (1.3)

is different from 1, even if it may be non negligible.

Remark 1. Analogously we can define a 5-pass identification protocol in which
there are two response protocols intercut by two challenges for each commit-
ment. These additional rounds may be useful for some particular protocols to
reduce the soundness, like in [CVE11]. Note that the following properties would
be defined in the same ways even for the 5-pass case.

First of all we give the first security definition for 3-pass protocols.

Definition 1.7 (Definition 2.2 of [AABN02]). We say that the 3-pass pro-
tocol Π “ pP1, P2, V1, V2q is polynomially-secure against impersonation under
passive attacks if for any probabilistic polynomial-time impersonator Evl with
access to a polynomial number of honestly generated transcripts TrpΠ, x,wq “

tpcomi, chi, respiqui of the protocol Π for px,wq P R the impersonation probabil-
ity:

ϵΠ,Evl “ P

»

—

—

–

V2px, com, ch, respq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

px,wq P R generated at random,

pcom, stq Ð EvlTrpΠ,x,wq
pxq,

ch Ð V DELPHIrnd
1 pcomq,

resp Ð EvlTrpΠ,x,wq
pch, x, stq

fi

ffi

ffi

fl

(1.4)
is negligible in λ.

An important security property that allow the evaluation of the imperson-
ation probability is the special soundness.

Definition 1.8. A 3-pass protocol Π is special sound if there exists a polynomial
time algorithm called extractor that given as input any statement x and any two
valid transcripts pcom, ch, respq, pcom, ch1, resp1q with ch ‰ ch1 outputs a valid
witness w for the NP relation R.
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Eventually we can also consider a relaxed version of the protocol soundness
in which there is an additional relation R̃ Ą R such that the extractor algorithm
outputs a witness for this presumably weaker relation R̃.

Moreover we need another requirement for the commitment phase: to have
an high min-entropy. A detailed definition for this concept can be read in
Definition 3.2 of [AABN02], but a simple version from [BKP20] say that the
protocol has α min-entropy if for any statement-witness pair px,wq P R and
commitment com:

P
”

com “ PDELPHIrnd
1 px,wq

ı

ď 2´α ;

then they say that the protocol has high min-entropy if 2´α is negligible in λ.
This observation is required to avoid degenerate situations in which there is
redundancy in the commitments.

Lastly we would like to have that the protocol does not yield undesired
information with respect to the witness w. To achieve this we need an addi-
tional important property called Zero Knowledge that we define in details in
the following section.

1.1.2 Zero Knowledge

Consider an NP decisional problem L, to prove that an instance x is in L with an
interactive proof the prover could simply send the certificate at the first round
interaction. Even if effective this strategy clearly discloses more information
than x P L or not.

Instead we would like the possibility for the prover of convincing the verifier
without disclosing anything more than the veridicity of the proposition. To
define rigorously this property in [GMR19] they use the following definition:

Definition 1.9. We say that an interactive protocol xV, P y is Perfect Zero
Knowledge if there is a probabilistic polynomial time algorithm S that for any
x P L can generate, without any further knowledge, a valid transcript with the
same distribution of the ones generated by xV, P y.

Eventually we may relax the condition to:

´ Statistical Zero Knowledge if we require only that the actual distribution
and the simulated one have negligible statistical distance in length of x;

´ Computational Zero Knowledge if we require that no probabilistic
polynomial-time algorithm can distinguish between original and simulated
transcripts with non negligible probability.

The main idea is that if an indistinguishable transcript can be generated
from x in polynomial time then we can recover only information that can be
already be obtained from the knowledge of x. With this we can finally proceed
in defining the concept of Σ-protocol, by using a more modern definition.
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Definition 1.10. A 3-pass protocol ΠΣ “ pP1, P2, V1, V2q for the NP relation
R (from Definition 1.6) is said Σ-protocol if it satisfy the (non aborting) Honest
Verifier Zero Knowledge property, i.e. if there exists a probabilistic polynomial-
time simulator Sim with access to the same random oracle DELPHIrdm that for
any px,wq P R, ch P ch produce a valid transcript pcom1, resp1q from x, ch.

More formally, for any computationally unbounded adversary Evl with access
to a polynomial number of queries to the common random oracle DELPHIrnd the
advantage probability

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P

»

– Evlpcom, respq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

com Ð P1px,wq,
resp Ð P2pch, x,wq,
resp ‰K

fi

fl ´ P r EvlpSimpx, chqq “ 1s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(1.5)
is negligible in λ.

We see later several examples of identification protocol, but just to give an
idea we show now a simple identification protocol for the discrete logarithm
problem. Given a cyclic group G “ xgy of order N the NP relation is R “

t pga, aq | a P ZNu. For a pair ph, aq the protocol consists in:

´ P1 computes a random integer k P ZN and outputs com “ gk;

´ V1 outputs a random challenge ch P ZN ;

´ P2 computes resp “ k ` ch ¨ a;

´ V2 accepts if and only if com ¨ hch “ gresp.

Since there are later similar and more meaningful proofs we leave to the
reader to verify that this is a Σ-protocol by proving completeness, special sound-
ness and zero knowledge.

In Protocol 1.1.1 you can see a more compact way to represent a Σ-protocol,
that we also use for the rest of the thesis (eventually adding above the used
parameters).

PROVER VERIFIER
Sample k P ZN and set com “ gk com

ÝÑ
ch

ÐÝ ch
$

Ð ZN .

Set resp “ k ` ch ¨ a
resp
ÝÑ

Accept if com ¨ hch “ gresp.

Protocol 1.1.1: Σ-protocol for the discrete logarithm problem

Remarks 2. As said for the AM definition, since the randomness for the first
verifier step is public, it is enough for the challenge evaluation to output the
randomness. So this step is always a random sampling on the challenge set.
Also we can observe that the assumption that P1, P2 share the state is used
here for the secret integer k.
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1.1.3 Fiat-Shamir Transform

At this point we have a protocol that requires the interaction between two
parties, that is inconvenient since in realty the verification may happen in a
separate moment. To solve this Fiat and Shamir in their seminal work “How To
Prove Yourself: Practical Solutions to Identification and Signature Problems”
[FS87] showed how to make an identification protocol non-interactive and render
it to a digital signature.

The idea is fairly simple: use Hpcom}mq as challenge, where H is collision
resistant cryptographic hash function, that takes the role of the random oracle.

You can see the resulting digital signature scheme in Algorithm 1, that fol-
lows the conventions of Definition 1.1. For example by applying the Fiat-Shamir
transform on Protocol 1.1.1 we would get what is called a Schnorr signature
scheme, the golden standard for nowadays digital signature schemes [Sch91;
Sch90].

Algorithm 1 Digital signature from a Σ-protocol

Setupp1λq:

1: decide public parameters for R;
2: decide the hash H;
3: return pp with this info

Verifyppk,m, sigq:

1: parse pcom, respq Ð sig;
2: ch Ð Hpcom}mq;
3: out Ð V H

2 ppk, com, ch, respq;
4: return out

KeyGenpppq:

1: Sample px,wq P R ;
2: return pk Ð x, sk Ð w.

Signpsk,mq:

1: do
2: com Ð PH

1 ppk, skq;
3: ch Ð Hpcom}mq;
4: resp Ð PH

2 pch, pk, skq

5: while resp ‰K

6: return sig “ pcom, respq

Signatures rendered from a Σ-protocol have a lot of nice properties, like
forward security and efficient instantiations. An important result for the Fiat-
Shamir transform is the following reduction:

Theorem 1.11 (Theorem 3.3 [AABN02]). Consider a Σ-protocol
ΠΣ “ pP1, P2, V1, V2q with high min-entropy and the associated signature scheme
DS described in Algorithm 1. Then the digital signature scheme is EUF-CMA
secure in the random oracle model if and only if the identification protocol is
polynomially-secure against impersonation under passive attacks.

To prove the if direction of Theorem 1.11, i.e. that from a secure identifi-
cation protocol we can get a secure digital signature (Lemma 3.5 [AABN02]),
they used a strategy called code-based game-playing ([BR06]). The core idea
is to start from an adversary Evl able to forge a signature and initiate a game
defined by:
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´ an Initialize procedure, executed at the start so that its outputs are the
Evl inputs;

´ specific procedures to respond to adversary oracle queries, in our case
random oracle queries and signing queries;

´ a Finalize procedure, executed after the termination of Evl so that its
outputs are the procedure inputs.

The output of the latter, denoted GEvl, is the output of the game. The
game allow for the situation in which the execution may fail, thus there is an
additional flag bad initially set to false.

Another approach used to reduce the security of the signature scheme to the
one of the identification protocol (introduced in [PS00] for signature schemes)
rely in an pivotal result for the study of security assumptions: the Forking
Lemma. There are several form of this lemma, we consider here the most general
one:

Lemma 1.12 (Forking Lemma, Lemma 1 [BN06]). Fix an integer q ě 1 that
represents the number of call to a random oracle; a set H of size h ą 1 that
represents the codomain of the random oracle. Let Evl be a randomized algorithm
that on input x, h1, ..., hq returns a pair pI, sigq. I is an integer in the range
0, ..., q, that represents the random oracle call in which the forking is happening,
while sig is the side output. Let IG be a randomized algorithm that we call the
input generator. The accepting probability of Evl, denoted acc, is defined as the
probability that J ě 1 in the experiment

x Ð IG; h1, ..., hq
$

ÐÝ H; pJ, sigq Ð Evlpx, h1, ..., hqq . (1.6)

The forking algorithm ForkEvl associated to Evl is the randomized algorithm that
on input x proceeds as follows in Algorithm 2:

Algorithm 2 Forking algorithm ForkEvl

1: Pick coins ρ for Evl at random;

2: h1, . . . , hq
$

ÐÝ H;
3: pI, sigq Ð Evl px, h1, . . . , hq; ρq

4: if I “ 0 then
5: return p0,K,Kq

6: h1
I , . . . , h

1
q

$
ÐÝ H;

7:
`

I 1, sig1
˘

Ð Evl
`

x, h1, . . . , hI´1, h
1
I , . . . , h

1
q; ρ

˘

;
8: if pI “ I 1 and hI ‰ h1

Iq then
9: return

`

1, sig, sig1
˘

10: else
11: return p0,K,Kq.
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Now let frk be the probability of returning
`

1, sig, sig1
˘

, then we have

frk “ acc

ˆ

acc

q
´

1

h

˙

. (1.7)

We give an intuition on the use of the lemma by proving:

Proposition 1.13. Consider an high min-entropy Σ-protocol ΠΣ for the rela-
tion R that is special sound (Definition 1.8). Then, in the random oracle model,
if there exists an EUF-CMA adversary that break the signature in Algorithm 1
derived from an ΠΣ we can extract the witness w in probabilistic polynomial-time
by the knowledge of the statement x P LR with non negligible probability.

Proof. Consider the probabilistic polynomial-time attacker Evl to the signature
in Algorithm 1 instantiated with the statement x as public key. We would like
to use the Forking Lemma to have two different valid signatures on the same
message m and commit com, but different responses resp ‰ resp1. Hence by using
the extractor from the special soundness definition we would get the witness.

Evl use a randomness ρ, performs a polynomial number q of call to the
random oracle and at some point asks the random oracle the query com}m used
for the forged signature. Let J be the index of this call, we modify Evl to return
as firs output J .

We need now to define the answers for Evl. For to the random oracle calls
we mediate them by the use of a table that stores pairs px, hq. When an input
x is not contained in the table we just query the oracle and store the output h
in the table with x, then return h. When the input is contained just return the
associated output.

For the signing queries on input mi we use the Perfect Zero Knowledge
property and we proceed as follows:

Algorithm 3 Signature simulation

1: Query the random oracle for a random challenge chi;
2: Run the simulator Simpx, chiq Ñ pcomi, respiq;
3: Add the pair pcomi}mi, chiq to the table; Ź the input may be already be

asked only with negligible probability
4: return the signature pcomi, respiq.

The action performed at line 3 is usually referred as reprogramming the
random oracle since what we are actually doing is modifying the hash function
so that on input comi}mi answer chi. By the properties of the simulator this is
a valid signature undistinguishable from an original one. When the adversary
outputs a valid signature com, resp for the message m return pJ,m, cmt, respq,
otherwise return p0,Kq. We see that the acc probability (J ě 1) in the Forking
Lemma is the probability of forgery for the original attack (thus non negligible).

We can now execute Algorithm 2 for our modified adversary Evl. The algo-
rithm succeeds with non negligible probability frk since acc is non negligible, q
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is polynomial and 1{h is negligible for the high min-entropy assumption. When
the algorithm succeeds:

´ We have as output two different message-signature pairs pm, pcom, respqq

and pm1, pcom1, resp1qq.

´ I “ I 1, this means that the query for com}m and com1}m1 has happened
at the same time. This implies that com “ com1 and m “ m1 since until
that point the executions where the same (same initial randomness and
oracle calls).

´ hI ‰ h1
I , this implies that the challenge associated to the response are

different. In fact here we have forked the execution, creating a different
final result for Evl.

Since the resulting signature are two both valid transcripts with same commit-
ments but different challenges we can use the extractor as described before.

1.1.4 Quantum Random Oracle

As said the ROM (Random Oracle Model) is a valid tool for understanding
the security of cryptographic schemes, de facto under the assumption that the
adversary cannot tamper with the hash function. However we should point out
that in post-quantum cryptography we should consider quantum probabilistic
polynomial-time adversaries allowed to perform computations on a superposi-
tion

ř

αx|xy.
This means that a quantum adversary, if able to compute the hash function,

can also learn
ř

αx|xy|Hpxqy in a single Random Oracle call. Thus in the
Quantum Random Oracle Model the adversary is allowed also to ask query in
superposition ([Bon+11]), eventualy measured in a second moment.

This create a problem for our proof strategies that reprogram the oracle at
runtime, in fact by the quantum mechanics properties we cannot observe or
copy the queries in advance without destroying them.

The problem of carrying out proof in ROM to proof for the QROM is clearly
non trivial, even if this does not imply that currently secure schemes are vulner-
able in the quantum model. For the specific case of the Fiat-Shamir transform
there have been intensive study in recent years, like [Unr17; DFMS19; LZ19].
The main result from this analysis involve the use of an additional property for
the Σ-protocol:

Definition 1.14 (Definition 24 of [DFMS19]). A Σ-protocol has quantum com-
putationally unique responses, if the verification predicate V2px, ¨, ¨, ¨q : COM ˆ

CHˆRESP Ñ t0, 1u seen as a relation between COMˆCH and RESP is collapsing
from RESP to COM ˆ CH.

By saying that a relation R Ă X ˆ Y is collapsing X to Y we mean that
when px, yq P R it is unfeasible to distinguish in polynomial time if x has been
measured or not. A detailed definition can be read in [DFMS19, Definition 23],
that generalized the one introduced from Unruh in [Unr16].
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In successive literature like [Blä+22] the quantum computationally unique
response definition is simplified. It is enough to ask that, given the security
parameter λ, for any probabilistic polynomial-time quantum adversary Evl the
probability

P
px,wq

$
ÐÝR

»

–

V2pcom, ch, respq “ 1,
V2pcom, ch, resp1q “ 1
resp ‰ resp1.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pcom, ch, resp, resp1q Ð Evlpxq

fi

fl (1.8)

is negligible in λ.
Eventually a stronger requirement is the existence of only one response for

any pair of commitment and challenge. In this case we say the protocol has
perfect unique response.

Theorem 1.15 (Combination of Theorem 9 [Unr12], Theorem 22 [DFMS19]).
Let ΠΣ be a Σ-protocol with quantum computationally unique responses for some
quantum secure relation R1; then the signature obtained via the Fiat-Shamir
transform is sEUF-CMA secure in the quantum random oracle model.

This theorem show the relevance of the quantum computationally unique
responses property when designing post-quantum primitives. The only lack of
this result is that the reduction from sEUF-CMA to EUF-NMA security is not
tight.

Tight reductions can be proved using additional assumption, e.g. see lossy
key generation from [AFLT12; KLS18], or using results from [GHHM21].

There they proved that, if we consider a random oracle model in which the
calls are only partially controlled by the adversary, we can randomly reprogram
the oracle also in the quantum oracle model. By partially controlled by the
adversary we mean that the oracle is a random function between finite sets
X1 ˆX2 Ñ Y and on each call px1}x2q reprogrammed to y the input x2 may be
chosen arbitrarily by the adversary, while the x1, y values are chosen accordingly
to a random distribution (possibly the uniform one).

To be more precise we state here the theorem for the uniform distribution
case.

Theorem 1.16 (Proposition 1 [GHHM21]). Consider finite sets X1, X2, Y , a
quantum probabilistic polynomial-time adversary and the following game. If

1: GAME ReproEvl(b)

2: DELPHI0
$

ÐÝ X1 ˆX2 Ñ Y ;
3: DELPHI1 Ð DELPHI0;
4: b1 Ð Evl|DELPHIby,Reprogram;
5: return b1.

6: Reprogram(x2)

7: px1, yq
$

ÐÝ X1 ˆ Y ;

8: DELPHI1 Ð DELPHI
px1}x2qÞÑy
1 ;

9: return x1.

1i.e. a quantum probabilistic polynomial-time adversary can recover the witness from the
statement only with negligible probability
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R is the number of times the oracle is reprogrammed and q is the number of
quantum queries of Evl to DELPHIb then distinguishing advantage is bounded
as:

ˇ

ˇ

ˇ
PrReproEvlp1q “ 1s ´ PrReproEvlp0q “ 1s

ˇ

ˇ

ˇ
ď

3R

2

c

q

#X1

In plain English this theorem implies that the reprogramming of a random
oracle is indistinguishable even for quantum queries if we only reprogram on
inputs with a “good portion“ of randomness to random outputs.

From this theorem the classical Fiat-Shamir reduction from NMA to CMA
that simulates signatures via reprogramming the random oracles on random
commits can be leveraged to prove this reduction also in the quantum random
oracle model ([GHHM21, Theorem 3]).

1.2 An Overview of Current Post Quantum Sig-
nature Schemes

We now proceed in showing here some signature schemes relevant for the post-
quantum cryptography community, all derived from the identification protocol
associated to some hard mathematical probel. The protocol is then rendered
non-interactive via the Fiat-Shamir construction explained before. We avoid
the one derived for group actions like LESS, MEDS and CSI-FiSh, which are
explained later in Section 2.2.

Crystarls-Dilithium The Crystarls-Dilithium signature scheme [Duc+18] is
one of the finalist of the 4 post-quantum algorithms selected by NIST for stan-
dardization in 2022. It is part of the so called lattice-based primitives, in par-
ticular its security rely on the following NP problem.

Problem 3 (Module-Learning With Errors (Mod-LWE)). Consider the ring of
polynomials Rq “ Zqrxs{xxk ` 1y. Given a lattice A P Rnˆm

q and a Gaussian
distribution χ on Rq centered on 0 define, from a secret vector s P Rnˆm

q and an
error e Ð χm, the statement b “ sA ` e. The Module-Learning With Errors
Problem requires to find the secret s from b,A, χ.

We can use Mod-LWE to define an equivalent of the Schnorr protocol (Pro-
tocol 1.1.1). Consider a statement b and a witness s, as in the problem for-
mulation. To compare two vectors and see if they are equal, minus an error
sampled with χ, we use a function HighBits that selects the highest bits of each
vector entry (we do not go into the details of its characteristics). Intuitively the
protocols is complete since:

resp ¨ A ´ ch ¨ b “ yA ` ch ¨ sA
looooooomooooooon

resp¨A

´ch psA ` eq
looomooon

b

“ yA ´ ch ¨ e » yA .

Since we are dealing with random non uniform distribution it is possible that
the response y ` ch ¨ s may reveal some information about the secret, thus it
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necessary to add an additional control before sending the response. If the check
is not passed then the round of the protocol is aborted. This observation is
crucial for the design of the protocol and the associated signature scheme, as
shown in [Lyu09]. Then Protocol 1.2.1 can be converted to a signature with the
Fiat-Shamir transform.

PROVER VERIFIER
Sample y P Rnq , set com “ HighBitspyAq com

ÝÑ
Set com “ HighBitspyAq

ch
ÐÝ ch

ϕ
Ð Rq.

Set resp “ y ` ch ¨ s
resp
ÝÑ Accept if

If resp R Gm then resp “K com “ HighBitspresp ¨ A ´ ch ¨ bq.

Protocol 1.2.1: sig-protocol for the Mod-LWE Problem

SqiSign An isogeny between the elliptic curves E,E1 is a surjective (on the
algebraic closure of the field) morphism ϕ : E Ñ E1, fixing the identity. Two
valid references for isogeny based cryptography can be found on [De 17] and
[Sil09, Chapter 3]. A separable isogeny may be described by its kernel, when
seen as a group homomorphism, thus for any subgroup G ď E we can define
and evaluate the isogeny ϕ : E Ñ E{G. The degree of an isogeny is both its
degree as rational map and the order of the kernel group describing it. A natural
problem arising from these objects it to find an isogeny between two random
elliptic curves.

Given a curve E the endomorphism ring EndpEq is the ring of isogenies
E Ñ E, with point-wise addition and composition as operations. The evaluation
of the endomorphism for a random elliptic curve is a conjecturally hard problem
well understood by the algebraic geometry community. More interestingly we
have that:

´ given two elliptic curves with known endomorphism ring, the isogeny be-
tween them can be evaluated in polynomial time;

´ given two elliptic curves with an isogeny ϕ : E Ñ E1 between them, from
the knowledge of EndpEq the other endomorphism ring EndpE1q can be
evaluated in polynomial time.

The Short Quaternion and Isogeny Signature (SQISign) is a isogeny based
digital signature scheme using a sig-protocol which proves the knowledge of the
endomorphism ring of a public curve EA. The curve EA is generated from
E0, a starting curve with known endomorphism ring, via a random isogeny
τ : E0 Ñ EA.

The commitment of the scheme is an elliptic curve E1 generated by a ran-
dom secret isogeny path from E0, i.e. a random isogeny ψ : E0 Ñ E1, and the
challenge is a random cyclic isogeny ϕ : E1 Ñ E2 (cyclic mean that the asso-
ciated kernel is cyclic) of fixed degree. The response is another cyclic isogeny
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E0 E1

E2EA

ψ

ϕ

sig

τ

Figure 1.1: Diagram for the SQISign identification protocol.

sig : EA Ñ E2 of fixed degree. See the diagram in Figure 1.1. Thus the verifier
only need to check that the diagram commutes and the response is cyclic of
the expected degree. Even if simple this protocol requires careful attention and
sophisticated algebraic procedures to ensure its security and efficiency.

Schemes based on Decoding A natural choice of hard problem is the Syn-
drome Decoding or Maximum Likelihood Decoding Problem, both for its in-
terdisciplinary and its well understood hardness. More on that in Section 3.1,
which is specifically dedicated to coding theory, for now we only insert here the
classical formulation for completeness.

Problem 4 (Syndrome Decoding (MLD)). Given an pn ´ kq ˆ n matrix H, a
vector s P Fn´k

q and a positive integer w find a non-zero vector e P Fnq solving

eHK “ s with number of non-zero entries less than w.

The story of Fiat-Shamir signature obtained from coding theory assumptions
trace back to 1994 with [Ste94; Vér97]. In these work a 3-pass protocol with
1{3 soundness for the MLD Problem was firstly proposed and improved.

Even if at the time the scheme parameters were impractical new variants
were studied. Around 15 years later a new 5-pass protocol for the same problem
was proposed in [CVE11], this time with soundness roughly 1{2. This last one
is shown in Protocol 1.2.2, where S Ă Fnq is the set of vectors with exactly w
non-zero entries. Thanks to the renovated interest for code-based cryptography
as a suitable family of quantum resistant problems new improvements where
proposed to render the Syndrome Decoding Problem to a functional digital
signature.

Much of these were in the direction of using structured codes that allows for
compression of the protocol responses, however, notably, two of the more inter-
esting proposal for the new NIST on-ramp call [NIS23] are based on random
codes. One uses cutting-edge multiparty computation techniques [Agu+23] and
is presented in Section 1.2.1, while the other [Bal+23a] is based on the Re-
stricted Syndrome Decoding Problem (R-SDP), that corresponds to a (conjec-
tured) harder version of the Syndrome Decoding Problem (SDP). R-SDP adds
the additional constraint that entries of the solution vector must live in a desired
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Public Data : Field Fq, integer w, set S and hash function H.
Private Key : Error vector e P S
Public Key : s “ eHK.

PROVER VERIFIER

Get u
$

ÐÝ Fnq , π
$

ÐÝ Sn com0,com1
ÝÑ

Set com0 “ Hpπ,uHKq

Set com1 “ Hpπpuq, πpeqq
ch0

ÐÝ ch0
$

ÐÝ F˚
q .

Set resp0 Ð πpu ` ch0 ¨ eq
resp0
ÐÝ
ch1

ÐÝ ch1
$

ÐÝ t0, 1u.
If ch1 “ 0, set resp1 Ð π resp1

ÝÑIf ch1 “ 1, set resp1 Ð πpeq If ch1 “ 0, accept if
com0 “ Hpπ, π´1pyqHK ´ ch0 ¨ sq

If ch1 “ 1, accept if resp1 P S and
com1 “ Hpy ´ ch0resp1, resp1q

Protocol 1.2.2: 5-pass identification protocol for the SDP (S “ Sw) and R-SDP
(S “ SE

w) .

subset E of the finite field.

Problem 5 (Restricted Syndrome Decoding (R-SDP)). Given an pn ´ kq ˆ n
matrix H, a vector s P Fn´k

q , a subset E Ď F˚
q and a positive integer w find a

non-zero vector e P Fnq solving eHK “ s with e P SE
w, where

SE
w :“ t x P pE Y t0uqn | x has w non-zero entriesu . (1.9)

The additional constrain in the set E is conjectured in [Bal+23a] to notably
increase the hardness, allowing for much better parameters choices. The iden-
tification protocol used in the signature is the same as for Syndrome Decoding
Problem (Protocol 1.2.2), but with SE

w instead of Sw, i.e. the response resp1
should be checked also for the E set constrain when ch1 “ 1. The scheme
obtained via the non-interactive version of the protocol is known as CROSS.

1.2.1 Multyparty Computations in the Head

An important ingredient for most of the protocols used today is the Multyparty
Computations in the Head paradigm, eventually adjoined with the hypercube
technique. The core idea is to share the witness w of an NP relation additively,
i.e. each party Pi get access to JwKi so that w “

řN
i“1JwKi. The set of shares

is also labelled JwK. Then a protocol evaluating fpwq is run collectively by the
parties using classical multiparty computations techniques, like:

´ Addition: Jx ` yKi “ JxKi ` JyKi;

´ Constant addition: Jc` xKi “ JxKi ` c1pi “ 1q;
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´ Constant multiplication: JcxKi “ cJxKi;

´ Multiplication: two shared value can be multiplied using a so called Beaver
Triple (JaK, JbK, JcK with ab “ c) using a well known procedure explained
in [Bea92].

This MPC protocol is then rendered to a 5-pass identification protocol with
the following structure:

1. Prover generates N shares of the input and commit to them as com1, ...,
comN ;

2. Verifier generates the randomness used for the protocol as first challenge;

3. Prover runs the MPC protocol in the Head, i.e. without disclosing it, and
commit to the output JfpwqK;

4. Verifier sends as challenge a set I Ĺ r1, N s of users, usually #I “ N ´ 1;

5. Prover sends the input shares of all the parties in I plus the shares JfpwqKi
for i R I;

6. Verifier checks the consistency of all the responses by rerunning the pro-
tocol for users in I.

The identification protocol can be then rendered non-interactive again using
the Fiat-Shamir transform. During the step 1 N ´ 1 shares are generated via
seeds using pseudorandom generator while the last one is obtained by subtract-
ing them from the original one. The soundness of the protocol is approxima-
tively2 N´1, but sadly the complexity also is linear in N .

To render the MPC in the head competitive with respect to the classical
repetition of the protocol a geometrical approach in [Agu+23], inspired to the
hypercube, is used in several schemes. The idea is to carry over the protocol
computations on the steps 3, 6 not on all the shares but just on the sum of
some selected partitions of r1, N s that allow the computation of the final output
fpwq.

More precisely, for each partition in r subsets during step 3 we associate r
shares, obtained via the sum on the subset of the partition. With this share
we perform an MPC computation. Then, during step 6, the verifier can use the
N ´1 shares to recover the sum of r´1 subsets and it only receives the missing
one, so it can check the computations consistency. The soundness of this part of
the protocol is approximatively r´1. The turning point of this strategy is that,
if we consider n pairwise distinct partitions with sizes r1, ..., rn, the soundness
is approximatively pr1 ¨ ¨ ¨ rnq´1 (suppose the missing subsets always intersect)
while the complexity is Opr1 ` ¨ ¨ ¨ ` rnq.

The geometrical interpretation is necessary to properly define these parti-
tions, fixN “ rn and r “ r1 “ ... “ rn, then consider an hypercube of dimension

2since also the choice of the randomness from step 2 influences the soundness of the protocol
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n with edge length r. Label each vertex with a schare and for each dimension
define a partition considering the r slices of the hypercube. The most used edge
length is usually 2. This way we got a complexity rn that is logarithmic in the
reciprocal of the soundness (» rn). More on that can be read in [Agu+23].

We see now two schemes based in classical decoding problems that exploits
the MPC in the head approach to achieve interesting parameters.

SDitH As anticipated before an appealing problem hard problem for post-
quantum signatures is the Syndrome Decoding Problem (Problem 16), its mul-
tiparty version where studied in [GPS22] and [FJR22], culminating in the hy-
percube optimized version [Agu+23].

This last protocol uses some polynomials that are null when the constrains
on the number of non-zero entries and the relation s “ eHK are verified. This
way by proving them equal to zero on random points, using hypercube MPC,
we get an identification protocol with soundness exponential with respect to the
overhead complexity.

MiRitH The protocol MinRank in the Head Digital Signature Scheme
(MiRitH, [Adj+23]) is based on the upcoming problem:

Problem 6 (MinRank). Given k`1mˆn matrices Cp0q,Cp1q, ...,Cpkq P Fmˆn
q

and a positive integer r ď minpn,mq find k coefficients t P Fkq such that:

Rank

˜

Cp0q `

k
ÿ

i“1

tiC
piq

¸

ď r .

The MinRank problem has been introduced in [BFS99] and has been studied
for over 20 years, e.g. see [BBBGT23; Bar+20; FLP08; GRS15].

In particular the MiRitH protocol proposed in [Adj+23] focuses on the
Knipis-Shamir modelling for Problem 6. This modelling states that, if a vector

t P Fkq and a matrix K P Frˆpn´rq
q satisfy

˜

C0 `

k
ÿ

i“1

αiCi

¸

¨

„

A
K

ȷ

“ 0 , (1.10)

with A P GLn´r; then t is a solution for the MinRank instace given by r
and the matrices Ci for i “ 0, .., k. By fixing A “ In´r is possible to render
Equation (1.10) to an equation of the formCL

t “ CR
t ¨K, which can be verified by

a generalization of the multiparty protocol by Baum and Nof for the verification
of matrix multiplication of triples of matrices. At this point the MPC protocol
can be rendered to a 5-pass protocol and a signature as explained before. The
protocol benifit also from several improvements proposed in the literature, e.g.
[DS23; Fen22].
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Scheme pk sig KeyGen Sign Verify
(B) (B) (Mcyc.) (Mcyc.) (Mcyc.)

Dilitium 1312 2420 0.3007 0.3007 0.3007

CROSS fast 61 12944 0.10 6.76 3.17
CROSS small 61 10304 0.10 22.00 10.28

SqiSIGN 64 177 3728 5779 108

SDitH small 120 8241 3.2 5.1 1.6
SDitH 120 10117 1.7 4.4 0.6

Mirith fast 129 7661 0.1091 8.904 8.309
Mirith small 129 5665 0.1091 77.911 78.181

Table 1.1: Comparison of the principal post-quantum digital signatures based
on the Fiat-Shamir paradigm.

Comparison of the Schemes In Table 1.1 we inserted a comparison of the
average parameters and running times for the schemes introduced before. All
this schemes are tailored to the NIST first level of security (λ “ 128 bits).

You can see that clearly the lattice-based one has the best parameters over-
all, in fact it has already been chosen for standardization. However, a wise
digital infracture should not rely on a single family of assumptions, thus further
research is necessary. All the other schemes but SQISign have small public keys,
balanced signing and verification time, but extensive signature sizes. Moreover,
being derived from coding theory related problems, their parameters choices for
the hardness assumptions are trusted since derived by established algorithms.
The only exception is the R-SDP form Cross since, even if convincing, its crypt-
analysis is much more recent. The isogeny based signature instead stand out
negatively for its performance, even if still practical, but also positively for
the very minimal public key and signature sizes, useful for several real world
applications.

In Chapter 3 there are other schemes like MEDS and LESS, with again
different characteristics, like smaller signature with respect to the public key
size.
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CHAPTER

TWO

CRYPTOGRAPHIC GROUP ACTIONS

In this chapter we describe a relatively new mathematical tool for defining
cryptographic primitives: the group action.

We start with an overview of some standard properties, in particular the
one relevant for cryptography. The main reference is [AFMP20], still we try to
give an overview of different approaches used in the literature. Even if we give
some instances of group action, we only discuss their hardness and quantum
resistance in the generic case, i.e. without trying to tamper with the action
internal structures.

Then in Section 2.2 we show how they can be used to instantiate a signature
scheme. In Section 2.3 we then show how to manipulate the scheme to improve
it with respect to the particular group action used.

For all the chapter we use multiplicative notation for G, and denoting with
e its identity element,

Definition 2.1. A group action is a function, shown below, that allows a group
G to act on a set X:

‹ : GˆX Ñ X

pg, xq Ñ g ‹ x
(2.1)

It is required to be compatible with the group; this means that

´ for all x P X we have e ‹ x “ x;

´ for all g, h P G, it holds that h ‹ pg ‹ xq “ ph ¨ gq ‹ x.

We indicate it by the tuple pG,X, ‹q. When not further specified a group
action is always defined on the set X and group G as in Equation (2.1).

Additional Definitions There are other properties and definitions classically
associated to group actions, in fact we say that a group action is:
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Section 2.0 Cryptographic Group Actions

´ Transitive, if for every x, y P X, there exists g P G such that y “ g ‹ x;

´ Faithful, if there does not exist a g P G such that x “ g ‹ x for all x P X,
other than the identity;

´ Free, if an element g P G is equal to the identity whenever there exists an
x P X such that x “ g ‹ x;

´ Regular, if it is free and transitive.

Definition 2.2. Given a group action pG,X, ‹q for a set element x P X we can
define its orbit as

Opxq :“ tg ‹ x | g P Gu

and its stabilizer as
Gx :“ tg P G | g ‹ x “ xu .

For finite groups we have a classical result called Orbit-Stabilizer Theorem
that implies

|G| “ |Opxq| ¨ |Gx| @x P X .

Notably, we can always have a transitive group action by restricting X to
an orbit Opxq. If the action is also free we get by the theorem the equality
|G| “ |X|, that is trivially implied by the bijection g ÞÑ g ‹ x (this is also a
consequence of the Theorem). This bijection implies that for any pair x, y of
elements in X there exists one and only one group element g with g ‹ x “ y, we
label this group element as δ‹px, yq.

2.0.1 Effective Group Action

While regularity is very reasonable property for group actions, to comply with
cryptographic purposes we need specific additional properties. First of all we
need to efficiently work on the action, i.e. on the group G, the set X and their
interactions. By efficiently we always mean that there exists a probabilistic
polynomial-time algorithm that solves the problem.

In [AFMP20] they characterize them as Effective Group Actions (EGA):

Definition 2.3. A group action pG,X, ‹q is said effective if:

1. It is possible to work efficiently on the group G, in particular we can
perform efficiently each of these:

(a) Given g, h P G compute their product gh and the inverse g´1;

(b) Sample an element g from G using a distribution that is statistically
close to the uniform;

(c) Testing if one string represent a valid group element in G;

(d) Deciding if two group elements g, h P G are actually equal.

2. It is possible to verify efficiently that a string corresponds to an element
in X and compute efficiently a unique representation for it;
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3. There exists at least on element x0 P X we can represent using a finite
length string;

4. Given any g P G and x P X we can efficiently compute g ‹ x.

Observe that when using an orbit like set Opxq the origin described in point
3 is exactly the element x. In some cases it may not be achievable in practice
to have an effective way to evaluate the group action on any group element
(property 4), thus we may restrict ourselves to ask that the action is effective
on a generating set pg1, ..., gnq of polynomial size, i.e. such that xg1, ..., gny “ G
and n “ polyplogp#Gqq. In this case we say the action is Restricted Effective
Group Actions (REGA).

2.0.2 Cryptographic Group Actions

To add the adjective cryptographic to an effective group action pG,X, ‹q we also
need it to define a one-way function, i.e. a function that is easy to evaluate but
hard to invert.

Definition 2.4 (Definition 9.4 of [AB09] adapted to [ADMP20]).
A polynomial-time computable function f : t0, 1u˚ Ñ t0, 1u˚ is a one-way
function with respect to the distribution Dinp (indexed by the integer λ) if, for
every probabilistic polynomial-time algorithm Evl, there is a negligible function
negl, such that for every λ:

PxÐDλ
rfpEvlpfpxqqq “ fpxqs ď neglpλq .

Eventually the function f can depend on a set P of public parameters pp,
sampled according to the distribution DP (still indexed by λ) and known to
the adversarial algorithm Evl. In this case we can speak of a one-way function
family with respect to the distributions pDinp,DP q. When the distribution is
the uniform one we omit it.

The natural problem that arises from group action is known as the vector-
ization problem, or sometimes Group Action Inverse Problem (GAIP).

Problem 7 (GAIP). Given x and y in X, find, if any, an element g P G such
that y “ g ‹ x.

Usually we require that x, y lie in the same orbit to be sure about the exis-
tence of a solution g. In other words, we require that given the public parameter
x P X, the functions fx : G Ñ X with fxpgq :“ g ‹ x are a one-way family. It
can also be useful to define the decisional version of Problem 7:

Problem 8 (d-GAIP). Given x and y in X decide if they lie in the same orbit,
i.e. if there exists an element g P G such that y “ g ‹ x.

Another related problem asks to compute the action of the product of two
group elements, given the result of the individual actions on a fixed element.
This is known as the parallelization problem, and it corresponds to, essentially,
the computational version of the Diffie-Hellman problem, formulated for generic
group actions.
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x y “ g ‹ x

h ‹ x gh ‹ x

g ‹

h ‹ gh ‹

Figure 2.1: Here we can see why the name vectorization is associated to the
task of finding the purple arrow (Problem 7), while parallelization to the task
of finding the red element to complete the parallelogram composed by the blue
one (Problem 9).

Problem 9 (c-GADH). Given x, g‹x and h‹x, for g, h P G, compute pg ¨hq‹x.

In general this problem is of particular interest when G is an abelian group,
since it is the computational assumption for the group action version of the
Diffie-Hellman key exchange.

Another possible problem for the group actions is relative to the search of
non trivial stabilizer elements:

Problem 10 (Stabilizer Computation). Given x P X find g P G such that g ‰ e
and g ‹ x “ x, i.e. g P Gxzt eu.

This problem is clearly impossible if the action is free. For several group
actions the Stabilizer Computation Problem is also called Group Automorphism
problem and has already been studied extensively, e.g. for code automorphisms
see [Leo82; BBPS21].

Hard Homogeneous Spaces Usually in isogeny-based cryptography they
use the terminology from the Couveignes’s notes [Cou06]. There the author
defines an Hard Homogeneous Space (HHS) as a group action pG,X, ‹q, or an
homogeneous space X on G to say it in an old-fashioned way, that is effective,
with Problem 7 and Problem 9 difficult to solve.

A Very Hard Homogeneous Space is instead a HHS X on G with the addi-
tional requirement that the following problem is difficult:

Problem 11 (Parallelization Testing). Given a polynomial number of tuples
tpxi, yiquni“0 of elements in X decide if there exists a group element g P G such
that g ‹ xi “ yi for all i “ 0, ..., n.

This problem is equivalent to the decisional version of Problem 9, in which
when given px, z1, z2, z3q it is required to distinguish between the case z1 “

g ‹ x, x2 “ h ‹ x and z3 “ pghq ‹ x from z3
$

ÐÝ X. In fact, by fixing n “ 1,
px0, y0q “ px, z1q and px1, y1q “ pz2, z3q, the problems are equivalent for any
transitive group action, since in this case there exists g, h P G with z1 “ g ‹ x
and z2 “ h ‹ x.
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In [AFMP20] they propose more adequate definitions to the current state of
literature. Consider a randomized oracle DELPHIg that, on query set elements
x sampled according to DX , outputs px, g ‹ xq for a fixed g P G

Definition 2.5. An HHS is an EGA such that for any probabilistic polynomial-
time algorithm Evl with access to DELPHIg we always have:

P gÐDG,
x˚

ÐDX

”

EvlDELPHIg px˚q “ g ‹ x˚
ı

ď neglpλq .

We also say that a group action with this property is pDG,DXq-weak unpre-
dictable.

De facto we are asking that for a random g P G, given a polynomial number
of tuples pxi, g‹xiq randomly sampled, it is difficult to compute px˚, g‹x˚q on a
given x˚ P X. Consider also another randomized oracle DELPHIDX

that, when
queried a set element x sampled according to DX , answers px, uq for u Ð DX .

Definition 2.6. A VHHS is an EGA such that for any probabilistic polynomial-
time algorithm Evl we have

ˇ

ˇ

ˇ
PgÐDG

”

EvlDELPHIg p1λq

ı

´ PgÐDG

”

EvlDELPHIDX p1λq

ı
ˇ

ˇ

ˇ
ď neglpλq .

We also say that a group action with this property is pDG,DXq-weak pseudo-
random.

De facto we are asking that, for a random g P G, we cannot distinguish
efficiently between a polynomial number of tuples pxi, g ‹ xiq and a polynomial
number of tuples pxi, uiq sampled uniformly at random.

2.0.3 Examples of Group Actions

Group actions are not new to modern cryptography, the Discrete Logarithm
Problem is a celebrated example. The first use of group actions non related to
DLOG trace back to 1997 [Cou06]1, with the use of isogenies of elliptic curves.
In general for any category the group of isomorphism Isom (with respect to
composition) of such category acts on the objects of the category x P X in a
natural way as ϕ ‹ x :“ ϕpxq. By the properties of morphism of category we
immediately get the compatibility with the group structure. We show some
examples in the upcoming paragraphs.

Group actions and the discrete log From a finite cyclic group G “ xgy of
order N we have a simple and classical example of EGA, the exponentiation:

‹ : Z˚
N ˆG Ñ G

pa, gq Ñ a ‹ g :“ ga .
(2.2)

1The work was submitted and rejected in 1997, then never published until its rediscover
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For this specific group action, the vectorization problem (Problem 7) is the well-
known Discrete Logarithm Problem, which serves as one of the cornerstones
of modern public key cryptography. It can be utilized to instantiate several
renowned cryptographic protocols, such as Schnorr signatures, the El Gamal
Encryption scheme, Diffie-Hellman key exchange, and others. It’s worth noting
that the modelization of the group action is reductive because we also have the
option to multiply elements in G, resulting in:

pa ‹ gq ¨ pb ‹ gq “ ga ¨ gb “ ga`b “ pa` bq ‹ g . (2.3)

Thanks to this additional property, more efficient protocols like Schnorr
signatures have been developed. However, as we point out in Section 2.1.1, it
also opens the door to potential polynomial quantum attacks.

Luckily, part of the nowadays used protocols do not directly rely on the use
of multiplication, but just on the action of the group. A nice and useful example
is the Diffie-Hellman like key exchange. In the classical scheme starting from
the public parameters G, g,N Alice and Bob decides secret keys a, b P Z˚

N and
publish respectively A “ ga and B “ gb. At this point the secret is the group
element gab “ Ab “ Ba. The same can be carried over by an abelian group
action, as shown in Protocol 2.0.1.

Public Data : Abelian group action pG,X, ‹q

and a shared element x P X

Alice Bob

Generate ga
$

ÐÝ G; Generate gb
$

ÐÝ G;
Set xa Ð ga ‹ x; Set xb Ð gb ‹ x;
Send xa; Send xb;

xa,xb
ÐÑ

Set s “ ga ‹ xb; Set s “ gb ‹ xa;
Use s “ gagb ‹ x “ gbga ‹ x as secret key.

Protocol 2.0.1: Diffie-Hellman like key exchange using abelian group action.

Isogenies of Abelian Varieties As explained before to introduce SQISign,
isogenies are non constant morphism ϕ : E Ñ E1 between the elliptic curves,
fixing the identity. Also each separable morphism is associated to its kernel.
These objects have very interesting properties, first of all the commutativity of
the actions (modulo using some shrewdness for the objects used in the imple-
mentation), that makes post-quantum Diffie-Hellman like key exchanges (Pro-
tocol 2.0.1) feasible.

The hardest obstacle to overcame for isogeny based schemes is the com-
plexity of securely computing the resulting elliptic curve via the Velù formulas
[Vél71],[BDLS20a]. This were solved in the Supersingular Isogeny Key Encap-
sulation scheme (SIKE, [Jao+20]) by using supersingular elliptic curves (i.e.
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curves with no non-zero points of order the field characteristic) and additional
torsion points.

This points where used as an auxiliary information to speed up the compu-
tation, however researchers shown that they can be used also for an efficient key
recovery attack, fully breaking the scheme [CD23; MMPPW23; Rob23].

Note that SIKE, even if much appreciated, was just one of the possible
instantiation of isogeny-based cryptography and its dawn does not impact the
security of other isogeny constructions like [CLMPR18] and [Cha+23]. Still the
family is a fertile research field, with several directions open, both for small key
signatures [DG19; BKV19], delayed encryption [BD21] and others [AFMP20].

Isomorphism Problems As hinted before the task of retrieving the isomor-
phism, if exists, between two category objects can be seen as a particular in-
stance of GAIP (Problem 7). In general, these classes of problems do not rely on
abelian isomorphism groups, but still they can be interesting for cryptographic
purposes thanks, to the traversal interest received from the mathematics and
computer science communities.

In Chapter 3 isomorphism problem related to coding theory are discussed,
while here we can recall the well known Graph Isomorphism Problem from
Graph Theory:

Problem 12 (Graph Isomorphism Problem (GI)). Given two graphs of size n
Γ “ pV,Eq and Γ1 “ pV,E1q find a graph isomorphism π, i.e. a permutation
such that tvi, vju P E if and only if tvπpiq, vπpjqu P E1.

GI is an important reference for isomorphism problems, but it cannot be
used in cryptography since it has been solved in quasi-polynomial time [Bab16].
Other equivalence problem can be defined from other mathematical structures,
like lattices [DW22], tensors [GQ21] and knots [FGHLS12].

2.1 Theoretical Hardness

We go now through some hardness properties for a generic group action. An
important one for the group actions derived problems is that they are hard on
average, in the sense that a random instance is expected to be as hard as the
hardest one. More formally:

Definition 2.7. A search or decision problem is said nonadaptively k-random
self reducible if there exists two probabilistic polynomial-time algorithms ϕ, σ
using a polynomial size randomness r (sampled uniformly) such that for any
problem instance x with solution sol:

´ the output σpi, r, xq for i P r1, ks are random instances of the initial prob-
lem and the output distribution is independent of the input instance x;

´ let soli be the solution associated to σpi, r, xq for all i P r1, ks, then

Pr rϕpx, r, sol1, ..., solkq “ sols ě
2

3
.
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What the definition says is that, given any hard instance, we can sample
random instances so that, if we are able to solve them, we can solve the search
problem for the hard instance with constant probability.

In [DAl22a] they proved that the GAIP is hard on average, more precisely:

Lemma 2.8 (Theorem 15 [DAl22a]). The GAIP for a regular effective group
action is nonadaptively 1-random self reducible.

Proof. Given a instance px, yq P X2 you can generate another random instance
by generating from the randomness r two group elements g̃1, g̃2 and using them
to generate pg̃1 ‹ x, g̃2 ‹ yq. This is clearly a valid instance because of the tran-
sitivity.

When having a GAIP solution h to the instance we have

g̃2 ‹ y “ h ‹ pg̃1 ‹ xq “ hg̃1 ‹ x .

By observing that:
y “ g̃´1

2 hg̃1 ‹ x ,

we get the witness g̃´1
2 hg̃1 for px, yq P X2 as required.

Also observe that since the action is regular and the group elements are
sampled at random via r also the output is uniformly distributed, implying also
it’s independence from the instance px, yq.

Clearly this property is very desirable for cryptographic primitives since this
way we have a provable security for any instance used as public key.

However there is also a downside regarding its NP-completeness.

Theorem 2.9 (Theorem 3.5 [FF93]). If an NP-complete problem is nonadap-
tively k-random self reducible, then the Polynomial Hierarchy collapses at the
third level.

More on the Polynomial Hierarchy can be read in Section 5.2 [AB09], how-
ever, the important point is that many computational complexity researchers
consider unlikely a collapse of the hierarchy. Thus as an immediate corollary
of Theorem 2.9 and Lemma 2.8 is that GAIP is unlikely to be NP-complete for
any group action.

Generic Attacks

As for the Discrte Logarithm Problem, we can explore attacks that does not rely
on the particular group action choice, but only on the group action operations.
First of all we can do a meet-in-the-middle attack to the GAIP with complexity
Op

?
#Gq. The attacks is on the same line as the Baby-step giant-step algorithm,

in fact we can create two lists tpg̃i ‹x, g̃iqu and tph̃i ‹y, h̃iqu by sampling random
group elements g̃i, h̃i. Then we search for collisions i, j such that g̃i ‹x “ h̃j ‹ y,

this way the solution is g̃´1
i h̃j . By the Birthday Paradox lists of size

?
#G

are enough to find a collision with non negligible probability. This idea can be
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traced back to the study of path finding in graphs from [Poh69]. Moreover, as
done with Pollard Rho attack for DLOG, a low memory variant (with similar
running time) can be found by performing pseudorandom walk on the graph.
It is called GHS attack, in honour of the authors Galbraith, Hess, and Smart
[GHS02]. Initially it was designed to find isogeny of elliptic curves, but it works
in general and an implementation for a generic group actions can be seen in
Section 4.3 of Stolbunov PhD thesis [Sto12].

2.1.1 Quantum Attacks

In the pivotal work [Sho94] it was introduced a quantum algorithm able to
break the discrete logarithm and factorization problems in polynomial time.
The procedure uses the Quantum Fourier Transform to estimate the phases of
a unitary operator that lead a solution for the underlying problem.

However, this algorithm strongly relies on being able to multiply two ele-
ments as in (2.3). When using it to find an a P ZN such that ga “ h, the first
step requires to compute the function fpn,mq “ gn ¨ hm in superposition:

1

q

q´1
ÿ

n“0

q´1
ÿ

m“0

|n,my Ñ
1

q

q´1
ÿ

n“0

q´1
ÿ

m“0

|n,m, gnhmy . (2.4)

The algorithm proceeds with a measure on the third register on a random
state gc, so that the first two registers satisfy n ` ma “ c. Then the Quantum
Fourier Transform put them again in another superposition, sieving all the pairs
n1,m1 that are not in phase, i.e. with n1 ‰ am1, so that any measurement lead
to a solution with constant probability. The key point of the algorithm is that,
thanks to the red term in (2.3), after the first measurement the second register
is a function of the first one with phase a. When we consider instead a group
action on a set X, where no compatible multiplication is defined, we cannot
anymore tamper with y “ ga ‹ x to end up with gam`n ‹ x.

Kuperberg’s quantum algorithm The Shor’s breakthrough lead the study
of quantum algorithms to solve group related problems. An important step
in that direction is the Kuperberg’s Algorithm [Kup05], which solves in sub-
exponential time a natural generalization of the problem solved by Shor: the
hidden subgroup problem for the dihedral group. This problem requires, given
black box access on f : G Ñ X, to find the unique subgroup H ď G such that
fpaq “ gpbq if and only if ab´1 P H (on the promise of its existence).

Quantum complexity of the hidden subgroup problem is deeply related to
the security of lattices and isomorphism problems [Reg04b], justifying the cryp-
tographic interest on it. Moreover there is a variant of the problem more related
to abelian cryptographic group actions.

Problem 13 (Abelian Hidden Shift Problem (HSP)). Given a finite abelian
group G, a set X and oracle access to two injective functions f1, f2 : G Ñ X
find g P G such that f1phq “ f2phgq for all h P G.
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The analogy with free abelian group actions and the vectorization problem is
immediate, given a group action pG,X, ‹q and a Problem 7 instance x, y “ g ‹x
(with g secret) we can define the two functions f1, f2 : G Ñ X as f1phq :“ h ‹ y
and f2phq :“ h ‹ x such that their shift is g:

f1phq “ h ‹ y “ h ‹ pg ‹ xq “ phgq ‹ x “ f2phgq .

The following observation is used in [CJS14] to show that the vectorization
problem for a free abelian group action can be solved by a quantum computer
in sub-exponential time Op2

?
log# Gq.

In particular the paper focuses on the problem of finding an isogeny between
two elliptic curves, that can be reduced to abelian HSP under the Generalized
Riemann Hypothesis. After the reduction the HSP is solved using a slight
generalization of Kuperberg’s result in [Kup05]. The major limitation for this
algorithm is that also a sub-exponential amount of space is required; which, for
our current understanding of quantum computations, is an important technical
limitation. However they also adapt a slightly slower polynomial space solution
from [Reg04a], with complexity bounded by L#Gp 1

2 ,
?
2q, where

LN pα, cq :“ exptpc` op1qqplogNqαplog logNq1´αu . (2.5)

2.2 Signatures

We can finally how to render any group action to a secure digital signature.
Let’s start by definining a Σ-protocol for the NP-relation induced by the GAIP
(Problem 7). The statement is the pair px, yq, while the withness is g P G such
that y “ g ‹ x. The idea is to commit to a random element x̃ “ g̃ ‹ x via an

ephemeral map g̃
$

ÐÝ G, then the prover is challenged to disclose the link between
px, x̃q or between py, x̃q. The commutative diagram underlying the protocol, an
important tool to manage the protocol, goes as follows:

x y

x̃

g ‹

g̃ ‹

g̃g´1
‹

You can see it also in Protocol 2.2.1. For simplicity we assume that the

element g̃
$

ÐÝ G is sampled according to the uniform distribution, even if there
is the possibility of considering different distributions.

Proposition 2.10. The 3-pass protocol in 2.2.1 is Complete, Special Sound for
the relation induced by the GAIP and Honest Verifier Zero Knowledge under
the collision resistence of the hash function H.

Proof. The protocol is clearly complete as it can be seen from the diagram. For
the special soundness assume the knowledge of two valid transcripts pcom, 0, aq
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Public Data : Group G acting on X via ‹, element x P X and hash function H.
Private Key : Group element g with gi P G.
Public Key : y “ g ‹ x.

PROVER VERIFIER

Get g̃
$

ÐÝ G, set x̃ Ð g̃ ‹ x, send com “ Hpx̃q
com
ÝÑ
ch

ÐÝ ch
$

Ð t0, 1u.
If b “ 0 then resp Ð g̃. resp

ÝÑ
Accept if Hpresp ‹ xq “ com.

If b “ 1 then resp Ð g̃g´1. Accept if Hpresp ‹ yq “ com.

Protocol 2.2.1: Identification protocol for the knowledge of the private key.

and pcom, 1, bq. Since the hash function is collision resistant we have that Hpx̃q “

Hpx̃1q implies x̃ “ x̃1, thus we have:

a ‹ x “ x̃ “ b ‹ y ,

thus we can extract the witness b´1a for the GAIP.
For the Honest Verifier Zero Knowledge we consider the simple simulator

Sim that on input x and ch output the following.

´ When ch “ 0 sample h̃
$

ÐÝ G and output com “ Hph̃ ‹ xq and resp “

h̃. This transcript is exactly the same as in the protocol so it is clearly
indistinguishable.

´ When ch “ 1 sample h̃
$

ÐÝ G and output com “ Hph̃‹yq and resp “ h̃. This
transcript has the same distribution as one generated by the use of the
secret g. In fact since the multiplication by a group element is a bijective
map then g̃ and g´1g̃ have the same uniform distribution, thus h̃ and g´1g̃
are indistinguishable also to an unbounded adversary.

Thanks to the special soundness the above protocol provides a soundness
error of 1{2 (the size of the challenge space), that can be amplified by simply
repeating the protocol λ times using independent challenges, resulting on a
soundness error of 2´λ. Thus we are ready to use the Fiat-Shamir transform
(Algorithm 1) as in Section 1.1.3 to render the Σ-protocol to a digital signature
EUF-CMA secure under the hardness of GAIP in the Random Oracle Model,
thanks to Theorem 1.11.

The first protocol using this construction, even if only sketched, traces
back to [Sto12], while the first practical implementation is the SeaSign scheme
[DG19], using the CSIDH group action [CLMPR18]. SeaSign also employ rejec-
tion sampling techniques since, in general, it is not possible to sample random

ideals in the class group (i.e. get g
$

ÐÝ G). The rejection sieves all elements
with ideal powers over a threshold, similarly as it was done in the Crystarls-
Dilithium scheme [Duc+18]. However note that commutativity is not required
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Algorithm 4 Digital signature based on the GAIP

Setupp1λq:

1: decide a cryptographic group ac-
tion pG,X, ‹q;

2: decide the hash H;
3: return pp “ xpG,X, ‹q,Hy

Verifyppk,m, σq:

1: parse pcom, resp1, ..., respλq Ð σ;
2: parse com as chi;
3: assign px0, x1q Ð pk;
4: compute ỹi Ð respi ‹ xchi ;
5: accept if com “ Hpỹ1}...}ỹλ}mq;

KeyGenpppq:

1: Sample x
$

ÐÝ X, g
$

ÐÝ G ;
2: return pk Ð px, g ‹ xq, sk Ð g.

Signpsk,mq:

1: g̃i
$

ÐÝ G;
2: x̃i Ð g̃i ‹ x;
3: com Ð Hpx̃1}...}x̃λ}mq;
4: parse com as chi;
5: respi Ð g̃ig

´chi ;
6: return σ “ pcom, resp1, ..., respλq

for this construction, so also each isomorphism problem can be used to render
signature schemes. The more intesting one are presented later in Section 3.4.1
and 3.4.2.

2.2.1 Security in the Quantum Random Oracle Model

Since this protocol is meant to be quantum resistant we need to investigate
its security in the quantum random oracle model. We use the results in Sec-
tion 1.1.4 integrated with [Blä+22], where they are adapted to the group actions
framework.

We focus now on the computationally unique response property for Proto-
col 2.2.1. Consider a valid transcript pcom, 0, g̃q for Protocol 2.2.1. The only
strategy to generate another transcript is to search another element h P Gzt g̃u

such that Hph ‹ xq “ com, that implies, assuming the hash function collision
resistance, h satisfies h ‹ x “ g̃ ‹ x. Hence x “ h´1g̃ ‹ x, thus we have found a
non trivial element in the stabilizer of x. On the contrary, from any non trivial
element s P Gx we can find h as g̃s. Said this it makes sense to consider the
Stabilizer Computation Problem (Problem 10) that requires, given x P X, to
find g P G non trivial such that g is in the stabilizer Gx. So we get the following.

Lemma 2.11 (Lemma 2 [Blä+22]). The Σ-protocol in Protocol 2.2.1 has com-
putationally unique response if and only if the Stabilizer Computation Problem
(Problem 10) cannot be solved by any quantum probabilistic polynomial-time ad-
versary with non-negligible probability, assuming the collision resistance of the
hash function used.

The proof can be derived directly from the discussion above; eventually it can
also be read on [Blä+22]. We point out that perfect unique response property
is equivalent to require that the stabilizer of each set element in X is trivial (see
Lemma 1 of [Blä+22]). We can finally combine Lemma 1.12 and Theorem 1.15
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to immediately have:

Corollary 2.12. For any group action such that the GAIP (Problem 7) and
the Stabilizer Computation Problem (Problem 10) are quantum resistant then
the signature obtained rendering Protocol 2.2.1 via the Fiat-Shamir transform
is sEUF-CMA secure in the quantum random oracle model.

Since free group actions have only trivial stabilizer they satisfy immediately
the perfect unique response, thus we have also:

Corollary 2.13. For any free group action such that the GAIP (Problem 7)
is quantum resistant then the signature obtained rendering Protocol 2.2.1 via
the Fiat-Shamir transform is sEUF-CMA secure in the quantum random oracle
model.

2.3 Optimizations

Assuming that set elements can be represented with lX bits, while the group
elements with lG bits, the digital signature presented in Algorithm 4 has the
following specifics. Note that for the elements generated at random, like x in
the public key, we can use instead the seed of size λ used for element generation.

´ Public key size: λ` lX bits.

´ Signature size: lG ¨ λ2 ` λ ¨
`

λ
2 ` 3

˘

bits on average. Here the size is non
constant since we can use the seed optimized representation only on the
challenge 0. The 3λ additional bits are for the commitment and for the
salt (see Remark 14).

´ Signing time: λ group action computations and around λ
2 group action

inversion and multiplications (usually these are neglectable like the hash
computations).

´ Verification time: λ group action computations.

Remark 14 (A Salty Remark). As pointed out in [Cha22] a straight use of a
pseudorandom algorithm, that from seed recover the elements, opens the pos-
sibility for a collision search attack. Thanks to the birthday paradox it cuts
the security to half the seed size. However in the same article they provided a
lightweight fix which only require the use of a single fresh salt for each signature
of length 2λ. The fix works as follows: for each signature, when calling the
pseudorandom function for the i-th time, use as seed: seed}salt}i. The salt can
then simply be inserted in the signature.

Now we go through several techniques used in the literature to improve some
of these parameters (eventually at the cost of worsening others). Even if this
optimizations are general, a combination of them is each time tailored for the
specific characteristics of the group action used.

Academic Year 2022-23 32



Section 2.3 Cryptographic Group Actions

2.3.1 Graph Topology

As said before when on chi “ 0 the prover is asked for the ephemeral group
element g̃ it can be compressed to the λ bits seed used for its generation, thus
it makes sense to have the challenge 0 occur (much) more often than 1. To do
that, one has to use the hash function to return a vector of fixed weight w and
length t, with

`

t
w

˘

ě 2λ to ensure the same level of security. This optimization
is in fact known in the literature as fixed-weight challenges. This idea is widely
used in the literature, for example in [BBPS21; Cho+22; BKP20].

Another idea proposed in [Jou23] and [BPS23] tries to optimize the protocol
via using a particular commitment strategy that resembles multiparty compu-
tations techniques used for other Fiat-Shamir like signatures.

These two optimizations can both be framed as a particular case of a gen-
eralized version of Protocol 2.2.1, in which the commitment can be seen as a
graph with set elements as nodes. The idea of use a graph abstraction to study
the signature induced by group actions is a powerful tool, for example we see it
with threshold functionalities, but also in [BGZ23] it was used to model all the
possible the commitment strategies and obtain a lower bound on the signature
size. In the following, this idea is used in a constructive way, following the path
of [BPS23].

The idea is to generate N commitments x̃1, ..., x̃N using any undirected
graph Γ of N ` 2 vertices in which

´ two vertices are x, y;

´ for all the other x̃1, ..., x̃N there exists a unique trail going from x or y to
each of them, like in figure 2.2a.

The graph contains exactly N edges. Nodes represent set elements, while edges
are ephemeral group elements, i.e. generated from a seed. Clearly if y “ g ‹ x
all the set elements in the graph belong to the same orbit.

The intuitive idea behind this construction is that, since we are assuming
that λ ! lG, the paths on the graph are a lightweight link between them.

The challenge is a subset I Ă t1, ..., Nu taken from a family F . To answer it
the prover has to send group elements such that he can link x to the elements
x̃i for i P I and y to the elements x̃i for i R I. Let’s define the protocol in detail,
with some examples.

Commit. The prover generate at random N group elements g̃1, ..., g̃N and
assign one of them per each edge of Γ. The he generate x̃1, ..., x̃N following the
trails, as in Figure 2.2a. The prover at this point can commit to the values
px̃1, . . . , x̃N q “ com.

Challenge. The verifier can chose any subset of the family ch “ I
$

ÐÝ F Ď

2t1,...,Nu. This is assigned to the element x, while the complement Ic is assigned
to y, as show for example in Figure 2.2b.

Response. The response to ch “ I is composed by two sets of group elements
corresponding to vertices in the graph.
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´ The first set of vertices/group elements links all the element in I to x

´ The second set of vertices/group elements links all the element in Ic to y

They can be evaluated via the knowledge of the secret key g and the ephemeral
group elements g̃1, ..., g̃N , as show for example in Figure 2.2c.

The response is composed always by at most two paths of N group elements
starting from x and y, that can be choose in different ways. Intuitively to
reduce the weight of the response we need to find the paths having the most
edges already contained in Γ. To have a unique response for each challenge we
need to force a policy on the sent paths. For instance, since for all the nodes
there is unique path from x or y we can use the following policy:

´ if two nodes both in I or Ic are already linked send the link;

´ if a trial is not all contained in I just send the link between x and the
node closest to the origin x or y; same with y if it is not all contained in
Ic.

Verification. To verify the correctness of the response the verifier need to
reach all the nodes ri and compute them via the received paths starting from
x for all i P I “ ch and from y for all i P Ic. At the end then he checks that
com “ pr1, . . . , rN q otherwise he rejects.

Proposition 2.14. Given any integer N and family F Ă 2t1,...,Nu the iden-
tification protocol for the relation y “ g ‹ x described above is complete,
Honest-Verifier Zero Knowledge, has soundness 1

#F and quantum computation-
ally unique responses under the assumption of the hardness of Problem 10.

Proof. Completeness. As seen in Figure 2.2c, by using the knowledge of the
link g between x and y and the trails of Γ an honest verifier can always link any
node to x or y.

Honest-Verifier Zero Knowledge. A simulator that knows in advance the chal-
lenge set I can generate ad-hoc nodes from x (and y) without the knowledge
of the secret g. When possible, he may follow the trails as in the commitment,
then for the ones linked to y simply generate a random group element as it is
done for the HVZK property in Proposition 2.10. For the same reasons as in
Proposition 2.10 the generated nodes and edges (group elements) have the same
distribution.

Special soundness. Suppose that the prover can answer two different challenges
I, J . Thus it exists at least an index k in the symmetric union I∆J , wlog
assume that k P I and k P Jc. Thus (assuming the collision resistance) from
the response to I they have both a trail linking x to x̃k, i.e. a product of group
elements g̃Ik such that x̃k “ g̃Ik ‹ x, and a trail linking y to x̃k, i.e. a product of

group elements g̃Jk such that x̃k “ g̃Jk ‹ y. So by considering
`

g̃Jk
˘´1

¨ g̃Ik we get
a solution to the group action inverse problem. From the special soundness we
get that the soundness error is |F |´1.
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(a) Initial graph
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(b) Random subset I “ t1, 2, 3, 6u as challenge.

x x̃1
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g̃6g̃4g̃1
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g̃4g̃1g
´1

(c) Response to the previous challenge. It consists on maps that are
able to complete the graphs.

Figure 2.2: Example of action subgraph optimization.
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Quantum CUR. We use the same idea of Lemma 2.11. Suppose we have two
valid different responses from the same pair commitment and challenge. Since
we ruled out using different paths for the same challenge, there is at least one
link pri, rjq so that the group elements giÑj , g

1
iÑj in the responses are different.

Hence rj “ giÑj ‹ri “ g1
iÑj ‹ri, that implies g´1

iÑjg
1
iÑj P Gri with g

´1
iÑjg

1
iÑj ‰ e,

against the hardness of Problem 10.

Uses for the graph Now we can try several combination for the graph Γ
and the challenges set F to improve the protocol. The classical version of the
protocol corresponds to fixing N “ λ,

Γ “ ptx, y, x̃1, ..., x̃Nu, Eq with E “ ttx, x̃iuuNi“1

and F “ 2t1,...,Nu. An example can be seen in Figure 2.3a, where it is shown how
to commit to 6 set elements, while in Figure 2.3b there is an example of response
to the challenge I “ t1, 2, 4, 6u, where the non-ephemeral group elements are
marked with the double arrow.

2.3.2 Fixed-Weight Challenges

To obtain the fixed-weight challenges optimization we can consider a graph with
the same topology as the classical one, N “ t and the challenge set composed
by the subsets of cardinality w. This way we have a soundness error of:

ϵ “

ˆ

t

w

˙´1

ď 2´λ .

Hence we have a (reduced) signature size of pt´w` 3qλ`wlG, but the signing
and verification requires the computation of t ą λ group actions. This way we
obtain a trade-off between space and time efficiency, that can be adjusted in
relation to the particular use cases.

Only for heuristic we can estimate asymptotically the overhead computation
necessary to get a signature of size lσ for a group action, assuming that λ ! lG
and the most expensive procedure during the signature is the group action
computation. If N is the total number of rounds then we can estimate it using
the Stirling approximation2 for the binomial coefficient:

λ „ log2

ˆ

N

t

˙

looooooomooooooon

security req.

» t log2pNq ´ log2pt!q » t log2pNq ´ t log2ptq . (2.6)

Since λ is negligible we can assume that lσ » lGt, with t the number of
non-ephemeral rounds. Thus combining the two estimations we get

2n! » pn{eqn, we use » to highlight that they are not asymptotic according to the classical
definition since there is also a

?
2πn term.
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(a) Initial graph
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(b) Response to the challenge

log2pNq »
λlG
lσ

` log2

ˆ

lσ
lG

˙

ùñ N »
lσ
lG

2
λlG
lσ

loooooomoooooon

approx. complexity

. (2.7)

2.3.3 Seed Tree

As said before the ephemeral elements can be recovered efficiently from the seed
used in their pseudorandom generation, that usually is much more light then a
full group element. In [BKP20] they showed how to improve this compression
by the use of a Merkle-like structure: the Seed tree.

The idea is to generate the seeds in a recursive way, via the use of a binary
complete tree. The tree has on each node a λ-bit string, while each pair of
children nodes is generated from the parent node parsing the output of a secure
pseudo random function Childs : t0, 1u˚ Ñ t0, 1u2λ, i.e. the first λ bits of
Childspnodeq are the left child, while the last λ ones are the right child. Thus

from a root seed seedroot we have generated 2M leaves t leafiu
2M

i“1 (where M is
the height of the tree). Each of this efficiently generated leaves can then be used
as seed in the protocol.

Note that to ensure collision resistance of the expander function Childs we
need it to take as input node}salt}i, where i is a unique predetermined index for
the call, as explained in Remark 14.

In general strategies like this are already in use to generate the randomness
used in cryptographic protocols, but they can also save space for the signature,
with negligible increase in complexity. In fact, when you need to reveal t´w out
of the t ď 2M seeds generated3 you just need to reveal the appropriate sequence
of nodes used during the computations. This way instead of using λpt´wq seeds
you can use λNseed, where this value can be upperbounded as:

Nseeds “ 2rlogpωqs ` ωprlogptqs ´ rlogpωqs ´ 1q ; (2.8)

for example for t “ 247, w “ 30 and we end up using 91.2λ bits instead of 247λ.
To use this functionality we need three functions, described in [BKP20]:

3We use this t, w notation to complain with the notation used in the literature
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seed1,5

leaf1 leaf2 leaf3 leaf4 leaf5 leaf6 leaf7 leaf8 leaf9 leaf10 leaf11 leaf14 leaf15 leaf16leaf12 leaf13

seed1,6 seed1,7 seed1,8seed1,1 seed1,2 seed1,3 seed1,4 seed1,5

seed2,1 seed2,2 seed2,3 seed2,4

seed3,1 seed3,2seed3,1

seedroot

Figure 2.4: Example of seed tree structure, here seedroot generates 16 leaves.
Note how the 4 nodes in green cover all the leaves underlined, without disclosing
information on the gray ones.

´ SeedTree pseedroot, tq Ñ tleafiu
t
i“1 : On input a root seed seedroot P t0, 1uλ

and an integer t P N, it constructs a complete binary tree with at least t
leaves by recursively expanding each seed using the functionality Childs.

´ ReleaseSeeds pseedroot, chq Ñ seedinternal : On input a root seed seedroot P

t0, 1uλ, and a challenge ch P 0, 1t, it outputs a list of seeds seedinternal
associated to nodes. These nodes covers the set of leaves with index i
satisfying chi “ 0. This means that union of all the leaves contained in
subtrees rooted at each of them is equal to the covered set of leaves.

´ RecoverLeaves pseedinternal, chq Ñ tleafiui s.t. chi“0 : On input the nodes
seedinternal and a challenge ch, it computes and outputs all the leaves of
covered by the nodes, that it is actually tleafiui s.t. chi“0.

Security In Lemma 1 [BKP20] they showed that, when modelling the function
Childs as a random oracle, the seeds obtained by the function ReleaseSeeds
using seedroot are indistinguishable by the one generated via a simulator without
access to seedroot for any computationally unbounded adversary making up to
a polynomial number of calls to the random oracle.

2.3.4 MPC for group actions

To obtain the same protocol as in [BPS23; Jou23] we need to consider a different
topology:

Γ “ ptx, y, x̃1, ..., x̃Nu, Eq with E “ tpx, x̃1qu Y ttx̃i, x̃i`1uu
N´1
i“1 ; (2.9)

Academic Year 2022-23 38



Section 2.3 Cryptographic Group Actions

while the challenge set is:

F “ tHu Y tr1,M suNM“1 .

This way the soundness error is pN ` 1q´1, while response requires:

´ only ephemeral elements when ch is the full set r1, N s, all generated from
a single root seed;

´ one non-ephemeral element in the other cases, plus log2pNq leaves to re-
cover the ephemeral elements from the seed tree.

An example of this setting for the graph can be seen in Figure 2.5. Note that
we can indentify the challenges using only the challenge set size #I P r0, N s.

This technique is associated with MPC in the Head (Section 1.2.1) because
what its happening here can be seen as N ` 1 users evaluating the group action
g ‹ x via passing through set elements x̃i, obtained by applying in sequence
random group elements g̃i, until the last user applies g ¨ g̃´1

1 ¨ ¨ ¨ g̃´1
N . Then, on

challenge j, the computations of all the users, but the j`1-th one, are disclosed
and verified.

By repeating this MPC version of the protocol t “ rλ{ log2pN ` 1qs times
we would get a signature with average size:

t

ˆ

N

N ` 1
plG ` log2pNqλq `

1

N ` 1
λ

˙

bits , (2.10)

that requires the computation of tN group actions both for the signature and
the verification. We can estimate the asymptotic complexity here as well, similar
to what was done in Equation (2.7), under the assumption that λ ! lG. For
a secure parameter set, we can express the relationship as t log2pNq „ λ, and
the signature satisfies lσ » tlG (ignoring the log2pNqλ term). Since the most
intensive part of the signature algorithm involves the evaluation of tN group
actions, we can approximate the complexity as:

tN »
lσ
lG

2
λ
t »

lσ
lG

2
λlG
lσ . (2.11)

While this is a heuristic approximation, it’s evident that this different ap-
proach doesn’t significantly improve the parameters compared to a fixed weight
challenge model.

However, a natural progression from this approach would be to unbalance the
challenges, as discussed in Section 2.3.2. This involves considering a challenge
set F with t ´ w full sets and w sets of cardinality ă N . In this case, the
cardinality can be expressed as:

#F “

ˆ

t

w

˙

loomoon

ch“N`1

¨ Nw
loomoon

ch‰N`1

. (2.12)

When #F ą 2λ, we obtain a signature of size:
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g ¨ g̃´1
1 ¨ ¨ ¨ g̃´1

8

(a) Initial graph

x x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

y

g̃1 g̃2 g̃3 g̃4

g̃4 ¨ ¨ ¨ g̃1g
´1

g̃5 g̃6 g̃7 g̃8

g ¨ g̃´1
1 ¨ ¨ ¨ g̃´1

8

(b) Response to the challenge I “ r1, 3s (#I “ 3).

x x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

y

g̃1 g̃2 g̃3 g̃4 g̃5 g̃6 g̃7 g̃8

(c) Response to the challenge I “ r1, 8s (#I “ 8).

x x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8

y
g̃4 ¨ ¨ ¨ g̃1

g̃1 g̃2 g̃3 g̃4 g̃5 g̃6

g̃5 ¨ ¨ ¨ g̃1g
´1

g̃7 g̃8

g ¨ g̃´1
1 ¨ ¨ ¨ g̃´1

8

(d) Optimized response to the challenge I “ r1, 4s (#I “ 4).

Figure 2.5: Example of action subgraph optimization on different challenges.
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wplG ` log2pNqλq ` pt´ wqλ . (2.13)

This approach allows for a more flexible challenge model, which can be ad-
vantageous in certain scenarios. However still it cannot improve with respect to
the fixed weight challenges, as shown in [BPS23]. They proved this by consid-
ering two protocols,

´ one using the MPC like protocol with N ą 1, t rounds and w non-
ephemeral rounds and soundness ϵ;

´ the other using fized weight challenge with t1 “ tN rounds, w1 “ w non-
ephemeral rounds and soundness ϵ̄.

The signature size is almost the same for both protocols since they have the same
number of non-ephemeral elements in the response, with only slight differences
due to the strategies used for seed compression. Clearly both protocols require
tN group action computations, so they have almost equal running times.

So we now compare the two soundness errors via the following chain of
inequalities:

ϵ´1 “

ˆ

t

w

˙

Nw “

˜

w´1
ź

i“0

t´ i

w ´ i

¸

Nw “

w´1
ź

i“0

Npt´ iq

w ´ i
“

“

w´1
ź

i“0

tN ´ iN

w ´ i
ă

w´1
ź

i“0

tN ´ i

w ´ i
“

ˆ

tN

w

˙

“ ϵ̄´1 . (2.14)

Thus we have that for same computational complexity and communication cost
the one based on fixed weight has smaller soundness error, making it preferable
from any point of view. Hence, as showed in [BPS23], the protocol based on
MPC does not make sense as it is, but still there is a possible use.

In fact, there is a possibile modification to the verification (and the response),
preserving the same soundness, but reducing the group actions computations
required, thus decreasing the verification time. The modified rounds goes as:

Response. In response to the challenge i send all the group elements, but
g̃i`1, as hj “ g̃j and hi`1 “ g̃i`1g̃i ¨ ¨ ¨ g̃1g

´1, as usual. Then add tj “ x̃j for
j “ 1, ..., i´ 1.

Verification. From the responses h1, ..., hN evaluate:

1. ri “ pg̃i ¨ ¨ ¨ g̃1q ‹ x (only one group action);

2. ri`1 “ hi`1 ‹ y;

3. rj “ hj ‹ rj´1 for j ą i` 1.

so in the end he verifies com “ pt1, ..., ti´1, ri, ri`1, ..., rN q. Note that in real
situation the commitment is compacted via hash function and Merkle-like struc-
ture, thus also t1, ..., ti´1 would have negligible impact on communication cost.
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Note that the verification now requires only N ´ i`1pch ą 0q group actions
computations, cutting the verification time to an average of

t´ w
loomoon

ch“N

`w pN{2 ` 1q
loooomoooon

chăN

“ t` w
N

2
group actions. (2.15)

Hypercube MPC for Group Actions

The Hypercube technique explained in Section 1.2.1 can be adapted also for
abelian group actions (additive notation). The strategy start again from the
graph in Equation (2.9), that match up with the multiparty computation of
y “ g ‹ x “ pg̃N`1 ` g̃N ` ¨ ¨ ¨ g̃1q ‹ x, for g̃N`1 “ g ´ pg̃N ` ¨ ¨ ¨ ` g̃1q. Lets fix
N ` 1 “ rn and consider the n partition of size r given by the hypercube slices
on each dimension.

Suppose that S1 \ ¨ ¨ ¨ \ Sr is one of these, thus

g “
ÿ

iPS1

g̃i ` ¨ ¨ ¨ `
ÿ

iPSr

g̃i ,

and the resulting group action evaluation goes as:

x x1 x2 xr´1 y

ř

iPS1
g̃i

ř

iPS2
g̃i

ř

iPSr
g̃i

.

Since the structure is the same as for the classical MPC version of the proto-
col (where we commit to x1, ..., xr´1) r´ 1 group actions are required, both for
the commitment and the verification phase. Instead the r ´ 1 group elements
necessary for the response can be obtained by summing the original group ele-
ments.

More formally, the partitions can be defined using the function digrpn, dq,
that returns the d-th digits of n in base r, e.g. dig2p10, 2q “ 1. In the d-th
partition all group elements with equal d-th digit are grouped together. So to
commit the group elements on dimension d “ 0, ..., n ´ 1 Prover start from
x̃d0 “ x and evaluates:

x̃dj “

¨

˝

ÿ

digrpi´1,dq“j´1

g̃i

˛

‚‹ x̃dj´1 for j “ 1, ..., r ´ 1 .

The key point now is that, after receiving a challenge for all of them, a unique
response composed by rn ´ 1 group elements can be generated. In fact the
union of all the required slices always miss exactly one element. To see this
geometrically observe that the complement of the union is the intersection of the
missing slice for each dimension, since them are orthogonal there is exactly one
point in all of them; the complementary of this point can be used to evaluate
all the responses, but never the missing slice sum. At digit level instead we
can observe that each challenge on the d-th partition misses one possible digit
value, say chd, corresponding to the missing partition, thus the element g̃c with

Academic Year 2022-23 42



Section 2.3 Cryptographic Group Actions

c´ 1 “ ch0 ` ch1r` ¨ ¨ ¨ chn´1r
n´1 is never required. Hence we can identify the

challenge with c “ ch and the challenge set with r1, rns. Hence to verify the
commitment the from respi “ g̃I , with i ‰ ch the Verifier, for all d “ 0, ..., n´1:

1. fix zd0 “ x, zdr “ y, chd “ digrpch ´ 1, dq;

2. for j “ 1, ..., chd set zdj “
ř

respi ‹ xdj´1 with the sum on the indeces with
digrpi´ 1, dq “ chd;

3. for j “ r´1, ..., chd`1 set zdj “ p´
ř

respiq‹xdj`1 with the sum on indeces
with digrpi´ 1, dq “ chd.

Also observe that the response contains just one non ephemeral element (the
rest are all generated from seeds) by the initial construction of the graph.

Public Data : Group G acting on X via ‹, element x P X and hash function H.
Private Key : Group element g with g P G.
Public Key : y “ g ‹ x.

PROVER VERIFIER

Get g̃i
$

ÐÝ G, set g̃2n Ð g ´
ř

iărn g̃i
comd
ÝÑ

For d “ 0, ..., n´ 1:
Set Sj Ð ti| | dig2pi´ 1, dq “ 0u;
Set comd Ð p

ř

iPSj
g̃iq ‹ x ;

ch
ÐÝ ch

$
Ð r1, rns.

Set respi Ð g̃i for i ‰ ch.

respd
ÝÑ

Accept if, for all d “ 0, ..., n´ 1:
if chd “ 0:

comd “ p
ř

dig2pi´1,dq“0 g̃iq ‹ x;

if chd “ 1:
comd “ p

ř

dig2pi´1,dq“1 g̃iq ‹ y;

Protocol 2.3.1: Identification protocol using the Hypercube.

Proposition 2.15. The identification protocol for the relation y “ g ‹ x de-
scribed before is Complete, Honest-Verifier Zero Knowledge and Special Sound.
It has soundness error r´n, requires npr´1q group action computations and the
response can be compressed in lG ` λ log2prn ´ 1q bits.

Proof. The Completeness comes directly from the observation on the challenge,
while for the soundness we can observe that the protocol is special sound since for
two different challenges ch ‰ ch1 there esist a dimension d with, wlog, chd ‰ ch1

d.
Since on this dimension we are doing one round of the classical MPC protcol we
can use the extractor from Proposition 2.14. Since the protocol is special sound
the soundness error is the inverse of #r1, rns.

To simulate the protocol on a known challenge ch is enought to prooceed
as usual, generating at random hi for i ‰ ch and repeating the verification
procedure to generate the commitments.
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Clearly the group action computations are r ´ 1 for each dimension. To
compress the response instead note that g̃1, ..., g̃rn´1 can be generated by a seed
tree, thus to send them all but one is enought to send the log2prn ´ 1q nodes
covering all the leaves but the missing one.

Protocol 2.3.1 contains one round of the protocol with r “ 2 and soundness
equal to 2´n.

2.3.5 Multiple-Bits Challenges

Fix r ą 1 and suppose that from x you generate xi “ gi ‹ x for i “ 0, ..., r ´ 1,

with g0 “ e and gi
$

ÐÝ G for i ą 0. In a nutshell, the technique proposes
to replace the binary challenges of the verifier with multi-bit ones, where each
challenge value corresponds to a different public key. In this way, it is possible
to amplify soundness, at the cost of an increase in public key size. Thus the
scheme become as in Protocol 2.3.2.

Public Data : Group G acting on X via ‹, element x0 P X and hash function H.
Private Key : Group elements gi with gi P G.
Public Key : xi “ gi ‹ x0.

PROVER VERIFIER

Get g̃
$

ÐÝ G, send com “ Hpg̃ ‹ xq
com
ÝÑ
ch

ÐÝ ch
$

Ð t0, 1u.

Set resp Ð g̃g´1
ch .

resp
ÝÑ Accept if Hpresp ‹ xchq “ com.

Protocol 2.3.2: Identification protocol for the knowledge of the private key.

This optimization was already proposed in [DG19] and its security relies on
a different, but related problem:

Problem 15 (mGAIP: Multiple Group Action Inverse Problem). Given a col-
lection x0, ..., xr´1 in X, find, if any, an element g P G and two different indices
j ‰ j1 such that xj1 “ g ‹ xj .

We prove the equivalence of hardness between this problem and Problem 7,
by generalizing the proof of Theorem 3 from [BBPS21].

Proposition 2.16. Given an algorithm to solve mGAIP, that runs in time T
and succeeds with probability ϵ, it is possible to solve GAIP (Problem 7), in time
approximately equal to T `Oppolypnqq, with probability of success equal to ϵ{2.

Proof. Let A be an adversary for mGAIP. We now show how to construct an
adversary A1 that is able to solve GAIP using A as a subroutine. From a GAIP

instance px, y “ g ‹ xq, A1 samples uniformly at random g
p0q

i , ..., g
pr´1q

i . Then,
it computes (in polynomial time) half of the elements starting from x, and half

starting from y; wlog, we can imagine that xi “ g
piq
i ‹x for i P r0; r{2´1s, while
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xi “ g
piq
i ‹ y for i P rr{2; r ´ 1s are generated from y. Since the new instances

are randomly generated, they are indistinguishable from the original one. At
this point, A1 runs A on input x0, ..., xr´1, and outputs, with probability ϵ, a
response g˚, j, j1 such that xj1 “ g˚ ‹ xj . Now, if the two indices lie in the two
different halves of r0, rs, it is possible to use the random group element to get

g; for example if j ă r{2 ă j1 then g “

´

g
pj1

q

i

¯´1

¨ g˚ ¨ g
pjq

i . Since this happens

with probability 1{2, we get the thesis.

Thus the protocol in Protocol 2.3.2 is still sound for the GAIP, but has

soundness error r´1, cutting the number of rounds to
Q

λ
log2prq

U

. Note that while

the number of rounds decreases logarithmically the public key size increases
linearly, so major advantages can be obtained for group action with efficient bit
representations of set elements, like isogeny based ones.

In fact in [BKV19] they go even further, by generating a large number of
public key elements and compressing them in a Merkle tree structure. This way
only the set elements required for the challenges are actually sent during the
verification and verified with Merkle proof.

Multibit challenges can be used in combination with the other optimization
listed before, for example with fixed-weight challenges for each of the w non-
ephemeral challenges the Verifier can ask the link to an element xch, for ch ą 0.
This way the combined soundness is

ˆ

t

w

˙´1

pr ´ 1q´w .

Instead with the MPC in the head protocol model the Verifier can ask a link
between x̃ch`1 and xch1 , for ch1

ą 0. So the soundness error goes down to

ˆ

t

w

˙´1

rNpr ´ 1qs´w .

Other combination of schemes with mutiple public keys are possible, but
should be considered with respect to the characteristics of the particular group
action.
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CHAPTER

THREE

CODE EQUIVALENCE

In this chapter we finally go through two coding theory derived isomorphism
problems. For a coding theory introduction we use as reference the wonderful
book [PWBJ17], in particular Chapter 1 contains all the basic propositions and
proofs for linear codes and their isomorphism maps. Then we follow the current
literature, e.g. [BMPS20; Cho+22; RST22; BBPS22], for the cryptographic
discussion on code equivalence.

3.1 Coding Theory

An rn, ks-linear code C of lenght n is linear subspace of Fnq of dimension k.
Any k ˆ n matrix G that generate the space is called generator matrix, while
any pn ´ kq ˆ n matrix H containing the linear equations of the code is called
parity-check matrix. Any pair of these two matrices satisfies:

G ¨ Ht “ 0 . (3.1)

A vector c contained in C is also called codeword. When codewords are sent on
a noise channel errors may happens; we model them as vectors in Fnq , added on
the sent codeword. So the received word has the form r “ c ` e.

The generator matrix can be used to generate each codeword from a row
vector in v P Fkq by a product vG, since it is a combination of the row vectors
generating C, also we have that:

c P C ðñ cHK “ 0 (3.2)

In some situation the vector space can have an additional structure, for
example for matrix linear codes they consider the space of mˆ n matrices over
Fq, that is isomorphic to Fmnq . In this case we refer to them as rmˆn, ks codes.
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Systematic Form A set I Ď r1, ns is said information set for a linear code C
if, given any generator matrix G of C, its restriction to the columns that belong
to I is of full rank, i.e. RankpGIq “ k.

When we have an information set I we can apply the change of basis G1 “

G´1
I G, this wayG1

I “ Ik and we can link bijectively each vector v to a codeword
c “ vG1 such that cI “ v. Of particular relevance is the case in which r1, ks is
an information set:

Definition 3.1. A generator matrix for a linear code G is in systematic form
if it has the identity matrix in the first k ˆ k block on the left, i.e. it is of the
form

G “ pIk | Rq

Given a generator matrix G P Fkˆn
q with r1, ks has information set we label

the systematic form determination as:

SFpGq “ G´1
r1,ks

G . (3.3)

The evaluation of (3.3) requires the evaluation of the right reduced echelon form
via doing Gaussian Elimination on G, that requires Opk3q operations.

Given a random matrix the probability of failure of SF is the probability of
Gr1,ks not having maximum rank, i.e. if G is a random matrix:

1 ´ pqk ´ 1qpqk ´ qq ¨ ¨ ¨ pqk ´ qk´1qq´k2 . (3.4)

For example for r252, 126s127-codes a random generator matrix systematic
form computations fail with probability less than 0.8%. The systematic form is
relevant during the encoding procedure, in fact we get vG “ v pIk | Rq “ pv |

vRq and we can read the original vector v in the first k entries.
Also it gives a canonical representation of a code C, but it is not the only

possibility. Another choice is the use of a pµ, νq-semi-systematic form:

Definition 3.2. A matrix G P Fkˆn
q of rank k is in pµ, νq-semi-systematic form

if it is in right row reduced echelon form and:

´ the first k ´ µ pivots are in the first possible positions 1, 2, ..., k ´ µ;

´ the other pivots are contained between k ´ µ` 1 and k ´ µ` ν.

The systematic form is a p0, 0q-semi-systematic form.

Duality The Equation (3.2) explain why the parity check matrix has an im-
portant role in error detection, in fact when we recieve a vector r “ c ` e we
can test if it lie in the code, i.e. if there are no errors with high probability, by
testing if 0 “ rHK “ pc ` eqHK “ cHK ` eHK “ eHK. Moreover the vector
rHK “ eHK, usually called syndrome and labeled s, has an important role for
the majority of the decoding algorithms.
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Definition 3.3. The dual code of a linear code C is the linear space

CK :“ tx P Fnq | xx, cy for all c P Cu .

If H is a parity check matrix for C then it is also a generator matrix for the dual
code CK. The hull of a linear code C is the intersection:

HpCq “ C X CK ;

In most situations xx,yy is the classical inner product xK ¨ y “
řn
i“1 xiyi

for finite dimensional vector spaces, but sometimes we may define it in different
ways. For example for matrix codes in [Rav16] they use the trace product:

xM,NyT “ TrpM ¨ NKq . (3.5)

Definition 3.4. A code that satisfies C Ď CK is said weakly self-dual, while if
C “ CK it is said self-dual.

Observe that for a weakly self dual code HpCq “ C X CK “ CK.

Decoding To actually use a code now we need to define a decoding strategy.
The most simple way to do that would be to use the channel model to evaluate
the conditional probability:

Ppr is received | c is sentq ;

then find the codeword that maximize this probability. This decoding strategy
is called Maximum Likelihood Decoding and even if precise is far from being
efficient for most channels. Another simpler way to quantify the effect of the
errors, that can also be used to evaluate the quality of a code, is to define a
metric on the vector space.

The most natural and classical way to do that is the Hamming metric, that
measure the number of different entries in two vectors:

dHpx,yq “ #ti | xi ‰ yiu . (3.6)

A metric can also be defined through a weight w, that is the equivalent of the
norms from classical euclidean spaces, so that dpx,yq “ wpx ´ yq. For the
Hamming case is:

wHpxq “ #ti | xi ‰ 0u . (3.7)

Other important examples of metrics are:

´ The rank metric, used for matrix linear codes, in which the weight is the
rank of the matrix:

wRpMq “ RankpMq .

It was introduced by Delsarte in [Del78] and Gabidulin in [Gab85], and
got beyond the radar for 30 years. It was rediscovered for its important
applications to network coding [SK11]. Also in post quantum cryptogra-
phy rank-metric codes are used for their optimal parameters, even if at
the moment are considered at a relative early stage.

Academic Year 2022-23 48



Section 3.1 Code Equivalence

´ The Lee metric, relevant for finite fields of cardinality q ą 3, that weights
in a different ways the entries of the vectors:

wLpxq “

n
ÿ

i“1

mint|xi|, |q ´ xi|u . (3.8)

´ The edit distance or Levenstein distance is the length of the shortest se-
quence of substitutions, insertions and deletion from one vector to the
other. It is used for channels where there are also synchronization errors,
like the one used for the DNA-storage or telecommunications with delays.

More nice example of metrics can be read on a Gabidulin’s survey: [Gab12].
We recall now some other useful classical concepts.

Definition 3.5. For a linear code C we can define the weight enumerator func-
tion WefpCq “ pAjqjě0 as

Aj :“ #tc P C | wpcq “ ju for all integers j ď 0 .

The values Aj are also referred as weigh distribution and the minimum d ą 0
such that Ad ą 0 is called the minimum distance.

Definition 3.6. The support of a vector c P Fnq is the set of indices i P r1, ns cor-
responding to non zero entries:

supppcq “ ti P r1, ns | ci ‰ 0u .

For any set B Ă Fnq we can also define its support as:

supppBq “
ď

cPB

supppcq .

For any subset J Ă r1, ns we define as EJ the subset of vectors with support
contained in J . We can use this sets to define the puncturing and shortening of
a code, as in [Sen99]:

Definition 3.7. Let C be a code in Fnq and J Ă r1, ns, we can define the
punctured code CJ as the projection of C on the subspace with the indices J
equal to zero (EJc), i.e

CJ :“ pC ` EJq X EJc ;

while the shortened code CzJ as the intersection with the subspace the same
subspace EJc , i.e.

CzJ :“ C X EJc .

When J “ j we use the notation Cj , Czj .

Classically speaking the punctured code is the code of lenght n ´ |J | with
the indices in J discarded, while here are simply set to zero, but it is clear we
are dealing de facto with the same objects. Instead the shortened code is the
set of codewords with zero entries on J . Results that follows this notation can
be read in [Sen99], here I want to recall only the classical duality:

pCJqK “ pCKqzJ and pCzJqK “ pCKqJ . (3.9)
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Hard problems for codes Being coding theory an established research topic
for over 60 years the complexity of the problems related to error-correcting codes
is mainly well understood. In particular for cryptography we are interested in
the NP-complete ones, that are the one related to the decoding of a generic
linear code, i.e. a code with no underlying structure.

Problem 16 (Maximum Likelihood Decoding (MLD)). Given a parity check
pn´kq ˆn matrix H, a vector s P Fn´k

q and a positive integer w find a non-zero

vector e P Fnq solving eHK “ s with wHpeq “ w.

Problem 17 (Nearest Codeword Problem (NCP)). Given a generator k ˆ n
matrix G, a vector y P Fnq and a positive integer w find a non-zero vector x P Fkq
such that dHpxG,yq “ w.

The high level decoding problem is Problem 17, in fact when we send over a
noisy channel a codeword c “ xG and we receive a vector y, the most reasonable
output for the decoding is the nearest codeword.

Lemma 3.8. Maximum Likelihood Decoding Problem and Nearest Codeword
Problem are equivalent.

Proof. NCP reduce to MLD in polynomial time: given an instance pG,y, wq fix
s “ yHK with H parity-check matrix associated to G, let e be a solution of the
MLD instance pH, s, wq, then py´eqHK “ 0 that implies py´eq lie in the code
generated by G. Thus we have dHpy,y ´ eq “ wHpeq “ w.
MLD reduce to NCP in polynomial time: given an MLD instance pH, s, wq

consider a generator matrix G for the code with parity-check matrix H and
any solution y to the equation yHK “ s. Solve NCP for pG,y, wq obtaining x,
then define e “ y ´ xG, then wHpeq “ dHpxG,yq “ w and py ´ xGqHK “

yHK ´ xGHK “ s.

Another important observation is that the decoding problem is equivalent
to the problem of finding low weight codewords, i.e. solving the MLD instance
pH,0, wq.

Lemma 3.9. Given an algorithm that finds all the codewords of weight w we
can solve use it to solve MLD Problem.

Proof. Given the MLD instance pH, s, w ´ 1q consider the code C with parity-
check p´sK | Hq. If e is a solution of the MLD instance then p1 | eq is weight
w codeword of C since p1 | eqp´sK | HqK “ ´s ` eHK “ 0. Thus if we have
all the weight w codewords we can solve MLD simply by considering the ones
with 1 as first entry. If no such codeword is found then the MLD instance has
no solution.

Even if the complexity of the decoding problem has been studied by the
cryptographic community for more than 50 years there are still some questions
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regarding their theoretical complexity, in particular, differently from, for exam-
ple, lattices, there is no known reduction from the average case to the worst
case.

In other words we are only mathematically sure of the existence of some
asymptotically hard instances, while a random code may be, in principle, easy
to solve.

ISD Information Set Decoding (ISD) is an established technique to solve MLD
Problem for a random code. It was introduced by Prange in the 60’s in [Pra62].
Several techniques and optimizations have been explored extensively both for
coding and cryptography for over 40 years. An updated list containing all the
literature for ISD can be found in https://isd.mceliece.org/.

The core idea, due to Prange, is to consider an Information Set I such
that there exists a w-weight codeword with support contained in I, consider a
permutation π that maps I to r1, ks and consider the generator map G1 “ πpGq

in systematic form, thus we have:

xG1 “ xpIk | R
loomoon

kˆn´k

q “ p e
loomoon

k

| 0
loomoon

n´k

q ; (3.10)

so x “ e and, if we are sure about the support assumption, we can find it in
the left kernel of R. The solution then is found as π´1px | 0q.

Observe that finding a set I is equivalent to finding a permutation with
πpIq “ r1, ks.

Since the hard part of this algorithm is searching the right permutation
Prange approximated the complexity as the inverse of the probability of getting
it:

O

˜

`

n
w

˘

`

n´k
w

˘

¸

.

Essentially the algorithm is composed by two parts: permutation search and
a solution of a linear algebra problem. Its cost is completely unbalanced on
the search of a proper information set (i.e. disjoined from the support), so
the improvements that followed Prange’s idea tried to rebalance this gap by
changing the procedure, allowing an intersection of size p between I and the
support, easing the search for a good permutation, but increasing the difficulty
of the second part.

In particular the best know modifications for non-binary fields (our case of
interest) is the one from [Pet10]. Suppose that we want to find a codeword
of the code generated by G P Fkˆn

q of weight w ă minpk, n ´ kq, thus we
consider a permutation π and the permuted matrix πpGq “ G1. The core
process of Peters’s ISD depends on two parameters p, l with 0 ď l ď n ´ k and
0 ď p ď tk{2u, that can be adapted to find optimal balancing between different
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procedures. Via basic linear algebra G1 can be reduced to:

G1 “

ˆ

Itk{2u 0 G1
X,Z G1

V
loomoon

n´k´l

0 Irk{2s G1
Y,Z

loomoon

l

˙

,

clearly if r1, ks is not an information set just chose another permutation. At
this point we proceed by creating two lists:

´ X “
␣`

e, s “ eG1
X,Z

˘(

, for all e P Ftk{2u
q with weight p;

´ Y “
␣`

e, s “ eG1
Y,Z

˘(

, for all e P Frk{2s
q with weight p.

A collision between the two lists is found if, given px, sxq P X, py, syq P Y , we
have that sx ` sy “ 0 and px | yqG1

V has weight w ´ 2p.
In this case we fix e “ rpx | yq | px | yqG1

V s and return π´1peq, otherwise we
chose another permutation and restart the process.

More about this ISD procedure is in [BBPS21; BBPS22] and [Bal+23b], in
particular the last one estimate the complexity as:

CISDpwq “ min
p,l

"

CITERpw, p, lq

PSUCCpw, p, lq

*

, (3.11)

where

CITER pw, p, lq “ l

ˆˆ

k

2
´ p` 1

˙

` pq ´ 1qp
ˆˆ

X

k
2

\

p

˙

`

ˆ

P

k
2

T

p

˙˙˙

`

`

2pqpw´2p`1q

q´1

´

1 `
q´2
q

¯

`

t k
2 u
p

˘`

r k
2 s
p

˘

pq ´ 1q2p

ql
`

pn´ kq2pn` kq

2
, (3.12)

and

PSUCCpw, p, lq “

`

t k
2 u
p

˘ `

r k
2 s
p

˘ `

n´k´u
w´2p

˘

¨Aw
`

n
w

˘ .

Remark 18. When trying to solve MLD aided by a quantum computer Grover’s
Algorithm [Gro96] can be leveraged to get a quadratic speedup on the Prange’s
ISD (this quantum procedure is also called Bernstein’s algorithm [Ber10]). An-
other improvement have been proposed in [KT17] using quantum optimized
walk algorithm, but the additional price in quantum memory is so excessive to
make them a real threat. A new memory efficient ISD procedure have been
proposed in [KTT23].

3.2 Code Equivalence

In the flavor of the Erlangen program ([Kis12]) we should ask ourselves which
group actions act on the geometrical objects we are looking into, in a similar
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way as the general linear group act on euclidean spaces. We can start with a
general definition for isometry:

Definition 3.10. A map ϕ : Fnq Ñ Fnq is said an isometry for the distance d if
it leaves the metric invariant, i.e.

dpϕpxq, ϕpyqq “ dpx,yq for all x,y P Fnq .

If ϕ it is also linear we call it linear isometry. Two rn, ks-codes C, C1 are said
equivalent with respect to the metric d if it exists a linear isometry for the
relative metric that maps C to C1.

In analogy to the euclidean case, for metrics induced by a weight, it is also
enough to check that the map is linear and

wpϕpxqq “ wpxq for all x P Fnq .

We have enough ingredients to define a general version of the code equiva-
lence problem:

Problem 19 (General Code Equivalence). Consider two linear codes C and C1

equivalent with respect to the metric induced by d, find the linear isometry ϕ
such that ϕpCq “ C1.

We can see this as a particular instance of GAIP (Problem 7). Observe that
clearly the identity is an isometry and the composition of two isometries is still
an isometry. Also they are invertible since the set Fnq is finite and the maps are
injective, in fact by the definition of distance:

x ‰ y ðñ 0 ‰ dpx,yq “ dpϕpxq, ϕpyqq ñ ϕpxq ‰ ϕpyq .

The isometries form a group with respect to the composition, let’s call it Isomd.
Define X as the set containing rn, ks-codes, we can consider the following group
action associated to the linear code equivalence:

‹ : Isomn ˆX Ñ X

pϕ, Cq Ñ ϕ ‹ C :“ ϕpCq
(3.13)

Now we proceed in instantiating Problem 19 for the Hamming metric, then
for Rank metric in Section 3.2.2. We assume here that the field Fq is a prime
field, i.e. that q is a prime, to avoid dealing with automorphism of the field.

3.2.1 Hamming Metric

Let’s start with two examples of isometries for the Hamming metric.

Example 20. Consider a permutation π in the symmetric group Sn, we can use
it to define the linear map ϕπ : Fnq Ñ Fnq :

ϕπpaq “ ϕπ
`

a1, ¨ ¨ ¨ , an
˘

“ paπ´1p1q, aπ´1p2q, ¨ ¨ ¨ , aπ´1pnqq .

The linearity is trivial, while for the isometry we can observe that the Hamming
weight is unchanged, in fact the number of non-zero entries of a does not depend
on the order.
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Example 21. Consider a vector v P
`

F˚
q

˘n
, i.e. with only non zero entries, we

can use it to define the linear map ϕv : Fnq Ñ Fnq :

ϕvpaq “ ϕv
`

a1, ¨ ¨ ¨ , an
˘

“ pv1a1, v2a2, ¨ ¨ ¨ , vnanq .

Again the linearity is trivial, while for the isometry we can observe that ai “

0 ðñ viai “ 0, thus the Hamming weight is unchanged.

This two examples are particularly relevant for our work since each linear
isometry can be seen as a combination of these, also called monomial map:

Theorem 3.11. Each linear isometry for the Hamming metric is a monomial
map.

Proof. Clearly a monomial map is a linear isometry as shown in Examples 20,
21.

Instead given a linear isometry ϕ we can observe that when applied to canon-
ical basis vectors ei since they have weight one necessarily also ϕpeiq has weight
one, thus we have that:

ϕpeiq “ vieji ;

with vi ‰ 0 and ji ‰ ji1 for all i ‰ i1 otherwise using linearity wpϕpei ´ ei1 qq “

wppvi ´ vi1 qejiq ă 2 against the isometry assumption. Define the permutation
π such that ji ÞÑ i and observe that:

ϕv ˝ ϕπpeiq “ viϕπpeiq “ vieji “ ϕpeiq .

Since both ϕ and ϕv ˝ϕπ are linear and are equal on a basis we have ϕ “ ϕv ˝ϕπ
as requested.

With this observation in mind we can instantiate the Problem 19 for the
Hamming metric. Let’s now define the set of all monomial maps as Monon, that
can also be seen as the group product Snˆ pF˚

q qn. They can also be represented
by invertible nˆ n matrices with exactly one non zero entries for each row and
each column. Since we are studying code equivalence for practical applications
we consider the set X Ď Fkˆn

q of all full-rank k ˆ n matrices, i.e. the set of
generator matrices of rn, ks-linear codes. On these applying a monomial map,
in matrix formQ, is equivalent to the right multiplication. Also to have a unique
representation we need to restrict ourselves to the case in which the generator
matrix are in a systematic form as in Definition 3.1, ensuring our group action as
effectively acting on linear codes, rather than on their representatives (generator
matrices). Combining these two observations the group action becomes:

‹ : Monon ˆX Ñ X

pQ,Gq Ñ Q ‹ G :“ SFpGQq
(3.14)

It is easy to see that the action is well-formed (since the standard form is just
a change of basis), with identity element In and is compatible with respect to
(right) multiplication.
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To see that it is an Effective Group Action we can go through the points of
Definition 2.3. By using the matrix representation for monomial maps we can
easily perform all the required computation on the group (item 1). For item 2
and 4 we simply observe that evaluating multiplications, rank and reduced right
echelon form (as required in Definition 3.1) are classical problems from linear
algebra that can be solved in polynomial times with respect to the matrices
dimensions. Item 3 is trivial for this group action.

We can see now that the vectorization problem (problem 7) for this group
action is a well-known problem in coding theory:

Problem 22 (Linear Equivalence (LEP)). Given two k-dimensional linear codes
C, C1 Ď Fnq , find, if any, Q P Monon such that C1 “ CQ.

In fact when representing the codes via generator matrices in standard form
the left multiplication by Q corresponds exactly to the group action computa-
tion in Equation (3.14). It is also of interest a special case of LEP, where the
monomial matrixQ is simply a permutation, known as Permutation Equivalence
Problem (PEP):

Problem 23 (Permutation Equivalence (PEP)). Given two k-dimensional lin-
ear codes C, C1 Ď Fnq , find, if any, π P Sn such that C1 “ πpCq. In this case we
say that C and C1 are permutation equivalent.

We can consider also a decisional version of LEP:

Problem 24 (Decisional Linear Equivalence (dLEP)). Given two k-dimensional
random linear codes C, C1 Ď Fnq say if they are equivalent or not.

In Section 3.3.3 we show that dLEP and LEP are equivalent, and also LEP
and PEP. All previous problems are conjectured hard by the cryptographic
community, also the group action pMonon, X, ‹q (3.14) is conjectured to be a
Very Hard Homogeneous Space (Definition 2.6).

Reduction Between PEP and LEP In the binary case (q “ 2) clearly
PEP and LEP are the same problem. Instead when q ą 2 we can observe
a permutation is also a monomial map, thus the instances of PEP are just a
particular subsets of LEP instances that can be solved in the same time.

To study the other direction between these problems we need to use the
closure of a code C, i.e. the Kronecker product Cba where a is a vector of length
q ´ 1 containing all the non-zero elements of Fq (the order does not matter).
If G is the generator matrix of C then the closure of the code is generated by
G b a. By using this construction we immediately have the inverse reduction:

Proposition 3.12 (Theorem 1 of [SS13]). Two linear codes C, C1 in Fq are
linearly equivalent if and only if their closures C b s and C1 b s are permutation
equivalent.
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The Role of the Change of Basis In the group action definition (3.14) we
have used the standard form SF to have a unique representation of the codes,
but this is not necessary in principle since we can consider a general change of
basis, this way the group action would become:

‹ : pGLk ¸ Mononq ˆX Ñ X

ppS,Qq,Gq Ñ SGQ .
(3.15)

We would like to point out that, even if the monomial map is usually consid-
ered the “true” representative of the action, the change of basis is as important
as the monomial map from a security viewpoint. Making it transparent would
render the entire group action solvable in polynomial time, in fact we have:

Proposition 3.13. Let G and G1 “ SGQ be the generator matrices for two
linearly equivalent codes. If S is known then it is possible to recover Q in
polynomial time by using sorting algorithms.

Proof. Knowing the linear map S, we can have the two codes written with re-
spect to the same basis. In particular we can consider the matrix S´1G1 “ GQ.
Note that this matrix and G have the same columns vectors, only permuted and
multiplied by a constant. So we can use Algorithm 5 to recover the monomial
map. The algorithm ends in polynomial time since it only requires basic linear
algebra operation and the sorting of two lists (Opn logpnqq complexity).

Algorithm 5 Monomial Map Calculation

Require: Two generator matrices G,G1 satisfying G1 “ GQ with Q being a
monomial map;

Ensure: The monomial matrix Q.
1: Set S Ð H;
2: for each column c in G do
3: Multiply c by the inverse of the first non-zero entry;
4: Ź We are setting the column in a standard form
5: S Ð S Y tcu;

6: Sort the list S using any order.
7: Memorize the resulting permutation as Q1.
8: Set S Ð H;
9: for each column c1 in G1 do

10: Multiply c1 by the inverse of the first non-zero entry;
11: S Ð S Y tc1u;

12: Sort the list S using any order.
13: Memorize the resulting permutation as Q2.
14: Get the permutation matrix P Ð Q1Q

´1
2 .

15: Find the coefficients by confronting GP and G1.
16: return Q
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Code Equivalence and Public Key Cryptography Coding theory prob-
lems (Problems 17,16) and code equivalence were already used 40 years ago
to define one of the oldest public key cryptosystems, ideated by McEliece in
[McE78]. The idea is to consider a particular rn, ksq-code C generated by
G P Fkˆn

q where, thanks to additional structure, we can solve efficiently the
NCP (Problem 17) for a low weight w. The structure of the code is masked by
taking a random monomial map Q P Monon and applying the equivalence:

G1 :“ Q ‹ G “ SFpG ¨ Qq “ S ¨ G ¨ Q .

This way n, k, q are the public parameters pp, G1 is the public key pk and
S,Q,G the private key sk.

The scheme then work as follows:

´ Given a message m P Fkq to encrypt, we sample a random error vector
e P Fnq of weight w “ wHpeq and we evaluate y “ m ¨ G1 ` e.

´ Given a ciphered text y we apply the decoding algorithm for G on yQ´1

and get z P Fkq , then we have m “ S´1z. In fact:

yQ´1 “ pm ¨ G1
loomoon

S¨G¨Q

`eqQ´1 “ m ¨ S ¨ G ` eQ´1
loomoon

wHpeQ´1q“w

,

hence from the decoding algorithm we got z “ m ¨S, that thanks to S lead
to the message.

3.2.2 Rank Metric

Analogously let’s consider three linear transformations on a matrix M P Fnˆm
q

that preserves the rank:

´ multiplication on the left side by an invertible matrix in GLm;

´ multiplication on the right side by an invertible matrix in GLn;

´ transposition of the matrix if n “ m.

These three linear maps can be used to define any possible linear equivalence
in the rank metric, since by [Mor14] we have:

Proposition 3.14. If ϕ : Fnˆm
q Ñ Fnˆm

q is a linear isometry for the Rank
metric, then there exist a n ˆ n invertible matrix A and a m ˆ m invertible
matrix B such that

1. ϕpMq “ AMB for all M in Fnˆm
q , or

2. ϕpMq “ AMKB for all M in Fnˆm
q ;

where the latter case can occur only if n “ m.
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In the cryptographic literature, even if n “ m ,only the case 1 is considered,
since we only need to check twice the map to consider also the transposition.
When the map is induced by the pair of matrices pA,Bq we may write ϕpA,Bq

or directly pA,Bq. Also for a linear matrix code C it is costum to indicate its
image through ϕpA,Bq as ACB. We may then define the group action as:

‹ : pGLn ˆ GLmq ˆX Ñ X

ppA,Bq, Cq Ñ pA,Bq ‹ C :“ ACB .

To actually represent the action as linear map we need to vectorize the
matrices by a map vec : Fnˆm

q Ñ Fnmq that slices the matrices to a vector of
dimension nm.

M “

¨

˚

˝

m1,1 . . . m1,n

...
. . .

...
mm,1 . . . mm,n

˛

‹

‚

ÞÑ vecpMq “ pm1,1, . . . ,m1,n, . . . ,mm,1, . . . ,mm,nq .

(3.16)
The inverse operation is labeled mat. This way we can use as generator

matrix for C the matrix in Fkˆnm
q that generates the following rnm, ks code:

vecpCq :“ tvecpMq | M P Cu .

An important property of the vec operator is the so called vec trick :

vecpAMBq “ vecpMq ¨ pAK b Bq ; (3.17)

where b is the Kronecker Product:

pAK b Bq :“

»

—

–

a11B ¨ ¨ ¨ am1B
...

. . .
...

am1B ¨ ¨ ¨ ammB

fi

ffi

fl

. (3.18)

We can finally compactly describe the group action induced by the linear
rank metric codes equivalence. In this case, the set X is formed by the k-
dimensional matrix codes of size m ˆ n over some base field Fq that are rep-
resented via generator matrices G P Fkˆmn

q . Then, the action of the group
G “ GLm ˆ GLn on this set can be described compactly as follows:

‹ : GˆX Ñ X

ppA,Bq,Gq Ñ SFpGpAK b Bqq
(3.19)

Note that this is equivalent to applying the matrices A and B to each code-
word M in the matrix code as AMB. We can finally define the rank metric
version of Problem 19 and its decisional version:

Problem 25 (Matrix Code Equivalence (MCE)). Given two k-dimensional ma-
trix codes C, C1, find, if any, A P GLm,B P GLn such that C1 “ ACB.
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Problem 26 (Decisional Matrix Code Equivalence (dMCE)). Given two k-
dimensional matrix codes C, C1 say if the are linear equivalent in the rank-metric.

Interestingly for the rank-metric there is no known polynomial time reduc-
tion between the decisional and the search version of the problem.

Relation to Tensor Isomorphism Tensors are a well known generalization
of the concept of matrices in higher dimension. They can also be used to define
a group actions: given the d-tensor space T “

Àd
i“1 Fni

q and the group G “

GLn1
ˆ ¨ ¨ ¨ ˆ GLnd

we can define

‹ : Gˆ T Ñ T

ppA1, ...,Adq,Tq Ñ
ÿ

i1,...,id

T pi1, . . . , idqA1e
p1q

i1
b ¨ ¨ ¨ b Ade

pdq

id
. (3.20)

Note that we have used the canonical basis te
piq
1 , ..., e

piq
ni u for any vector space

Fni
q so that the following equality holds:

T “
ÿ

i1,...,id

T pi1, . . . , idq e
p1q

i1
b ¨ ¨ ¨ b e

pdq

id
.

The orbits of the group action (3.20) are exactly the class of isomorphism for
tensors, this way we can define the equivalent of GAIP (Problem 7) for tensors:

Problem 27. (d-TI) Given two tensors T,T1 P
Àd

i“1 Fni
q find, if any, the

isomorphism pA1, ...,Adq P GLn1 ˆ ¨ ¨ ¨ ˆ GLnd
between them.

A pivotal result for the study of this problem is the reduction:

Theorem 3.15 (Theorem B of [GQ21]). d-TI reduces to 3-TI in polynomial
time.

Since in the same paper (Theorem A) it is showed a reduction of 3-TI to
several other problems from different areas of algebra it makes sense to define
the complexity class TI-complete that contains all the problems with polynomial
time reductions to and from d-TI.

In particular also MCE is proven to be TI-complete in [DAl22b]. In fact it
is straightforward to see a matrix code as a 3-tensors and the equivalence as
matrix multiplication on the 3 axis.

Change of Basis

As for the Hamming-metric case we can ask if the change of basis (here done
again setting the generator matrix in systematic form) is necessary for this group
action too. The answer of this question can be found in the analysis contained
in [RST22] for the problem MCEbase:

Problem 28 (MCEbase). Given two k-dimensional matrix codes C, C1 with
generator matrices G,G1 P Fkˆnm

q , find, if any, A P GLm,B P GLn such that

G1 “ GpAK b Bq.
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In fact in Remark 16 [RST22] they show how via reductions to problems
related to the isomorphism of polynomials that Problem 28 can be solved in
polynomial time on random instances (Opk6q).

For completeness we should point out that this reduction was already known
in the tensor isomorphism community via a reduction to the module isomor-
phism problem, which admits a deterministic polynomial-time solution with
the Brooksbank-Luks algorithm [BL08]. More on that can be seen in Section
3.3.2 of [JQSY19].

3.2.3 General Considerations

The two problems share clearly some similarities, in particular they are both
non-abelian group actions. This clearly reduce the possible cryptographic prim-
itives based on them, for example we cannot build a Diffie-Hellmann like key ex-
change. However this has advantages from a security viewpoint since it prevents
quantum attacks on commutative group actions like Kuperberg’s algorithm for
the dihedral hidden subgroup problem (see Section 2.1.1).

Also both these group actions are based entirely on linear algebra on finite
(prime) fields, thus the operations required are simple and well understood by
the algebraic community from long time. To compute them we need:

´ permutation and rescaling of a matrix for the monomial map, that requires
only Opnq operations;

´ multiplication of matrices, that requires Opnωq field operations. The value
ω depends on the particular algorithm used for multiplication, for example
the Strassen’s algorithm (used in practice for finite fields) achieve ω “

log2p7q » 2.807. At the moment the best asymptotic algorithm in 2023
achieves ω “ 2.371552;

´ systematic form computation, this is the most expensive computation
since it requires to compute a right reduced echelon form that requires
Opn3q field operations for the de facto inversion of a k ˆ k matrix, as
explained before.

This is an important advantage both for speed and for implementation with
respect to other code based schemes that requires also complex decoding algo-
rithms and to other group actions like isogenies that uses complex procedures
like Velu’s formulas [BDLS20b].

Suppose now that the base field is not prime, this mean that there exists non-
trivial automorphism on the field, e.g. the Frobenius one x ÞÑ xp, that induces
linear isometries when applied over the codes. This means that in this case we
should consider also the Galois group GalpFpm{Fpq for the group actions. For
both the constructions, cryptographers studying them observed that the Galois
Group does not improve neither the security or the efficiency of the protocols,
so discarding this possibility.
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Trivial Automorphism Group As seen in Section 2.2.1 an important ques-
tion for the quantum security of these group actions is the sizes of the group of
automorphisms, i.e. the linear equivalences of the code on itself.

It is a common belief that the automorphism group of the codes is trivial with
overwhelming probability. To our knowledge it is computationally infeasible to
compute automorphism of codes of this size, so we can conjecture that the
Stabilizer Computation Problem (Problem 10) is hard.

In Appendix B of [BBPS21] there are some estimates for the probability of
finding a permutation or a monomial map that is an automorphism for a random
code, while the MEDS team ([Cho+22]) analysed computational data on smaller
sized matrix codes seeing that the probability of a random code having trivial
automorphism group grows rapidly in the parameters q, n and m. Thus both
schemes use the following assumption:

Assumption 29. For all in use parameter sets, our code equivalence induced
group actions, (3.14) and (3.19), are free, i.e. the stabilizers are trivial.

Reduction Between Them We have noted before some differences in the
two group actions, thus a question should arise about their equivalence. It is
well known in literature that LEP reduces to MCE in polynomial time, it has
been proved in Lemma 34 of [CDG20], but also you can see Proposition 3.6 of
[GQ19] in combination with [DAl22b].

We briefly introduce here the reduction from [CDG20]. Recall thst ai is the
i-th column of the matrix A. Consider now the operator Rowi : Fkq Ñ Fnˆk

q

that maps a vector to an empty matrix with only the i-th row non zero:

Rowipxq :“

¨

˝

0 ¨ ¨ ¨ 0
x

0 ¨ ¨ ¨ 0

˛

‚ .

Given a generator matrix G P Fkˆn
q we can build the following rk ` n ˆ k, ks-

matrix code:

CMatpGq :“

#

n
ÿ

i“1

λi

ˆ

gig
K
i

Rowi pgiq

˙

: λi P Fq

+

.

This construction is compatible with the structure of the codes, in fact we
have that if pA,Bq is a positive instance of the monomial equivalence problem,
i.e. they generate two linear equivalent codes, then pCMatpAq, CMatpBqq is a
positive instance of dMCE, i.e. they are equivalent in the rank-metric.

As shown in [CDG20] if they are linear equivalent there exists S P GLk,Q P

Monon such that:
A “ SBQ ;

with Q “ DP, where P is a permutation matrix and D a diagonal matrix.
Denote by α1, . . . , αn P F˚

q the diagonal entries of D. Then, for any 1 ď i ď n,
it exists 1 ď j ď n (image of i by the permutation given by P ) such that,

ai “ αjSbj and aiai “ α2
jSbjb

K
j S

K .
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This gives:

CmatpAq “

ˆ

S 0
0 P

˙

CmatpBqSK .

The matrices for the equivalence are clearly nonsingular, therefore, we have a
positive instance of dMCE. Also we have the following:

Lemma 3.16 (Lemma 34 [CDG20]). Given two generator matrix A,B P Fkˆn
q

and U P GLk`n and V P GLk which verify:

CMatpAq “ UCMatpBqV .

Then, there exists a permutation σ P Sn and α1, . . . , αn P F˚
q such that:

ˆ

aia
K
i

Rowi paiq

˙

“ ασpiqU

ˆ

bσpiqb
K
σpiq

Rowσpiq

`

bσpiq

˘

˙

V for all i .

The lemma does not only prove that positive instances of dMCE are sent
to positive instances of dLEP (that would be trivial using the diagonal opera-
tor), but also that a solution to Problem 25 can be used to find a solution to
Problem 22.

Suppose now that the two codes CMatpAq, CMatpBq are equivalent, then the
two underlying linear codes are linear equivalent and we can find the monomial
map such that solves LEP in polynomial time from two non-singular matrices
U and V solving MCE, i.e. such that:

CMatpAq “ UCMatpBqV .

By Lemma 3.16, for any 1 ď i ď n, it exists 1 ď σpiq ď n and ασpiq P F˚
q such

that:
ˆ

aia
K
i

Rowi paiq

˙

“ ασpiqU

ˆ

bσpiqb
K
σpiq

Rowσpiq

`

bσpiq

˘

˙

V

“ ασpiqU

ˆ

VKbσpiqb
K
σpiq

Rowσpiq

`

VKbσpiq

˘

˙

.

These two matrices are both of rank 1 and their row spaces are generated by
aK
i and bK

σpiqV . Therefore since they represent the same spaces because of

the equality ai and bσpiqV
K are linearly dependant. By combining the linear

coefficient between them and the permutation we get the monomial map solving
LEP. Also observe that VK is the change of basis matrix.

3.3 Hardness

We need now to study the practical hardness of recovering a linear code iso-
morphism. We go through the most important techniques known in literature,
in particular the algebraic modeling and the Leon’s like attacks, some of them
introduced already 40 years ago.
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hQMLE
MCE

3 ´ TI

MLD

LEP
PEP

GI

[RST22]

[CDG20]

[DAl22b]

[Leo82] Prop. 3.12

[Luk93]

Figure 3.1: Reduction for code equivalence related problems

We give an estimate of the hardness, but also prove some reductions and
discriminate a set of hardest instances for the equivalence problems. A summary
diagram with reductions between the problems can be seen in Section 3.3. When
relevant we also explain how exploiting a quantum computer can improve the
final results.

3.3.1 Algebraic Attacks

A classical technique to solve a problem in complexity theory is to describe it
via the use of polynomial equations, so that the set of solutions to the system
corresponds to the set of solutions to the initial problem (a nice example of this
reduction can be seen for MLD in [MPS23]).

For example consider a LEP instance C, C1 that satisfies

GXH1K “ 0 , (3.21)

where G is the generator matrix of C, H1 the parity check matrix of C1 and X
a monomial map.1 To consider a system of equations that finds LEP solutions
we can assign as variables the coefficients of X as X “ rxi,js

n
i,j“1, then request

them to satisfy:

´ Equation (3.21);

´ on each column there is only one non-zero elements, i.e. xi,jxi1,j “ 0 for
all i, i1, j P r1, ns with i ‰ i1;

´ the sum of any row is equal to a element of F˚
q , i.e. that p

ř

l“1 xilq
q´1

“ 1
for all i P r1, ns2.

Thus a matrix X is a monomial isometry for C, C1 if and only if it is a solution
of the following polynomial system:

1we use X instead of Q to avoid confusion with the field cardinality q.
2By basic algebra since we are in a prime field the set of solutions of zq´1 “ 1 is F˚

q
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QC,C1 :“

$

&

%

GZH1K “ 0
řn
j1“1 xi,j1 “ 1, 1 ď i ď n

xi,jxi1,j “ 0, i ‰ i1
(3.22)

So we can use well known techniques from computational algebra to solve
LEP. We can do the same for PEP using the following system:

PC,C1 :“

$

&

%

GPH1K “ 0
řn
j1“1 pi,j1 “ 1, 1 ď i ď n

pi,jpi1,j “ 0, i ‰ i1
(3.23)

This approach have been extensively studied in the work [Sae17] by adjoin-
ing the systems with redundant equations and using Faugere’s algorithms for
Groebner Basis calculations. In details you can see [Sae17, Section 3] for PEP
and [Sae17, Section 4] for LEP.

Thanks to this analysis we can state that algebraic attacks does not pose a
threat to instances already secure for successive attacks.

Instead when trying to model the MCE problem in Section 6.2 of [Cho+22]
they were to obtain competitive attacks.

For MCE start by considering two matrix rn ˆ m, ks-codes C,C1 with basis
pCp1q, ...,Cpkqq and pDp1q, ...,Dpkqq such that it exists A P Fmˆm

q , B P Fnˆn
q and

a change of basis S P Fkˆk
q , all three invertible with :

k
ÿ

t“1

srtD
ptq “ ACprqB, @r P r1, ks . (3.24)

These three are the same that satisfies G1 “ SGpAK b Bq, where G and G1

have as i-th row vecpCpiqq and vecpDpiqq respectively. The variables are still the
coefficients of these three matrices, this way we have knm bilinear equations for
k2 `n2 `m2 unknowns. In [Cho+22] they showed how to improve the previous
system. The first observation is that by guessing the A equations they get a
linear system that can be solved efficiently in Oppn2 `k2q3q time. To refine this
idea we should try to guess only αm variables from the first α rows of A and
consider only the first αkn equation. Clearly at this point choosing the smaller
α so that we still obtain an indeterminate linear system is the optimal choice,

in particular this way with α “ rn
2

`k2

kn s the complexity goes to:

O
´

qm
n2`k2

kn pn2 ` k2q3
¯

. (3.25)

Remark 30. As seen in [DAl22b] and noted before MCE problem is equivalent to
3-TI problem, where none of the three coordinates plays a special role and can
be cyclically exchanged by a change of basis. By using the reductions between
the problems thus we can also move a MCE instance in tensor representation,
change the representation basis and go back to matrix code representation. With
this observation we see that none of the three secret matrices plays a special
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role and the parameters k, n,m can be exchanged easily in Equation (3.25) (and
any other possible attack complexity).

Because of this clever trick the MEDS team fixed n “ m “ k for any instance
used in the final submission.

For the case n “ m “ k we get α “ 2 and we can try to use a quantum speed
up via the Grover Algorithm [Gro96] for the enumeration of the 2n variables for
A. Since the speed up is quadratic we go from a complexity of Opq2nn6q to

Op qn
loomoon

Grover

¨ n6
loomoon

Gauss elim.

q . (3.26)

Since for implementation choices the actual instantiations have field size q ě

2039 this speed up does not pose a threat to the quantum security of MCE.
In [Cho+22] they improved again on the current algebraic modeling by re-

moving the S variables. This can be done in different ways, also shown in
[Cho+23] and in relation to the tensor modeling. Here we show one of them,

that uses the parity check matrix H1 P Fnmˆpnm´kq
q of the code C1 in the same

way as Equation (3.21) to discard the change of basis map.
Consider the matrix:

G̃ :“ GpAK b Bq .

This matrix generates the same matrix code as G1, only with a different base,
thus as done before

G̃ ¨ H1K “ 0 . (3.27)

This system has kpnm´ kq bilinear equations for n2 `m2 variables and can
be solved with classical techniques to solve polynomial systems, like bilinear XL.
In [Cho+23] a similar approach is then applied with variables pA,Sq, pB,Sq and
then all together. This approach cannot be improved on quantum computers
since no relevant quantum speedup is known for this problem.

3.3.2 Leon Like Attacks

In [Leo82] Leon proposed an algorithm to find equivalences between codes (in
the Hamming metric) built on the observation that usually the set of codewords
with low weight is small, thus when considering two set of codewords of low
weight from the two codes they contains enough information to recover the
secret isomorphism via a trial and error matching of the codewords in the two
lists.

The algorithm to find an isometry ϕ such that ϕpCq “ C1 can be summarized
as:

1. find Bw :“ tc P C | wpcq “ wu and B1
w :“ tc P C1 | wpcq “ wu;

2. find the set

MorIsomnpBw, B
1
wq :“ t ψ P Isomn | ψpBwq “ B1

wu ; (3.28)

where Isomn is the set of isometries for the weight w;
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3. find ϕ P MorIsomnpBw, B
1
wq with ϕpCq “ C1.

The second step is polynomial in the average cardinality of Bw: Nw :“
ECrBws, thus when choosing the parameter w we need to observe that:

´ w is not high, since Nw grow exponentially with respect to it;

´ w is not too low, otherwise the two sets Bw, B
1
w do not contain enough

structure and the set of solution MorIsomnpBw, B
1
wq grows exponentially

too;

´ the low weight codewords computation represents the most relevant bot-
tleneck for the algorithm, since it is equivalent to solve the well studied
NP-complete problem Maximum Likelihood Decoding (Problem 16).

Permutation Equivalence The algorithm described before from [Leo82] has
complexity:

OplogpNwqCISDpn, k, q, wqq ; (3.29)

where the cost of computing MorSn and verifying the map is ignored.
The proof of this can be found in Appendix C [BBPS22], where the authors

also explore optimal values of w, finding that for random codes Leon’s procedure
excels when w is slightly larger than the GV distance (dGV ` 1 or dGV ` 2).

In [Beu20] Beullens observe that the Leon’s idea can be improved using the
Birthday Paradox. Instead of evaluating all Bw, B

1
w we can:

1. find two lists LC , LC1 of codewords from C and C1 with fixed weight w;

2. for any pair pc, c1q P LC ˆ LC1 set it as a collision if

tciu
n
i“1 “ tc1

iu
n
i“1 ; (3.30)

i.e. see if they have the same entries in different order;

3. from each collision imply that πpiq ‰ j if ci ‰ c1
j ;

4. retrieve π when there are enough collisions, approximately in [Beu20]
2n logpnq codewords of weight w are required to recover a map;

5. the algorithm succeeds if πpCq “ C1.

Clearly point 2 lead to useful collisions, i.e. such that actually πpcq “ c1,
with much higher probability for large field sizes q. In this cases the complexity
goes down to:

O

˜

d

n logpnq

Nw
CISDpn, k, q, wq

¸

. (3.31)

More details can be found again in Appendix C of [BBPS22].
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Linear Equivalence When we take into consideration a monomial map τ P

Monon instead of a permutation the multiset comparison as in (3.30) cannot
be used anymore, thus Beullens observed that subcodes of fixed dimension and
small support size can be used instead. In particular he proposed the use of:

Xw :“ t B Ă C | dimpBq “ 2 and # supppBq “ wu

and X 1
w with the same characteristics, but for C1 subcodes. Both in [Beu20;

BBPS22] the list of elements from Xw and X 1
w are compared using the first

lexicographic base for them, i.e. the smallest generator matrix for the subcodes
of the same orbit with respect to the lexicographic order. This invariant can be
evaluated for any 2-dimensional subcode B Ă C in Opmaxpq, nqq computations
via:

1. finding the minimal weigh codeword x of B via listing them all (q ` 1
operations);

2. complete the basis with another independent codeword y;

3. using a monomial map µ to have all the zeros at the start and ones in all
the other wpxq entries;

4. reorder the last wpxq entries of µpyq so that they are in lexicographic
order.

From this point [BBPS22] improved by generating these 2-dimensional sub-
codes with small support size, say w, via:

1. using ISD to find codewords of weight w1 with 2w1 slightly larger that w;

2. consider all the matrices generated from pairs px,yq of these codewords;

3. keep only the one such that supppxq X supppyq has cardinality 2w1 ´ w,
this way xx,yy has support size w.

In Proposition 8 [BBPS22] they estimated the optimal complexity as:

O

˜

CISDpn, k, q, w1q
?
Nw1

ˆ

n logpnq

ζw1,w

˙1{4
¸

; (3.32)

where ζw1,w is the probability that a subcode generated by two random code-
words of weight w1 has support size w (Lemma 2 [BBPS22]), that is equal to
`

w1

2w1´w

˘`

n´w1

w´w1

˘`

n
w1

˘´1
.

Rank-metric version First of all in the rank-metric the low weight code-
words search is equivalent to the MinRank Problem (Problem 6).

The strategy proposed in [Cho+22] consist in finding collisions between pair
of codewords pC1,C2q and pC1

1,C
1
2q. An isometry between them lead to the
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following linear equations:
$

’

’

&

’

’

%

AC1 “ C1
1B

´1

AC2 “ C1
2B

´1

A´1C1
1 “ C1B

A´1C1
2 “ C2B

(3.33)

that lead to 2n2 linear equations for 2n2 variables when n “ m. Sadly since
the codewords are not of full rank the number of independent equations is only
at most 2n2 ´ 2pn ´ rq2 leading to a solution space of dimension 2pn ´ rq2.
This equations thus have to be combined with the equations from the algebraic
model in Section 3.3.1. Now let’s focus in the case n “ m “ k, in which the
optimal rank to get a solution is r “ n ´

?
n. With this parameter choice the

solution spaces have dimension 2n “ 2pn ´ n `
?
nq2 thus when we substitute

Equation (3.33) into 3.27 we get a system that is bilinear with 2n variables for
A and the same for B with npn2 ´ nq linear equations. Hence we can linearise
the system via assigning to each of the 4n2 quadratic monomials a variable and
solve it via Gaussian elimination in p4n2qγ operations with γ ď 3 (the exact
value depends on the particular algorithm used).

Now we need to evaluate the cost of the list enumeration and collision search.
Let’s set as CMRkpn,m, k, qq the complexity of solving Problem 6 (a recent
estimate can be found in [Bar+20]). The average number of nˆm matrices in
Fq of rank r in a matrix code of dimension k can be estimated as Opqσq with
σ “ rpn`m´ rq ´ nm` k. This because the probability for a random matrix
to lie in the code is qnm´k, while the probability to have rank r is approximated
as qrpr´n`mq.

By the Birthday Paradox the two lists need to have size
?
2qσ. The list

enumeration cost is dominated by the value CMRkpn,m, k, qq, that we use as
complexity. Eventually it can be improved by observing that since the number
of expected solution for MinRank is qσ we can try to assign σ variables and then
run the MinRank solver bringing the complexity to OpqσCMRkpn,m, k´ σ, qqq.
This remark can be used also to exploit the Grover’s Algorithm to bring the
quantum complexity down to Opqσ{2CMRkpn,m, k ´ σ, qqq. Thus we do the
implicit assignment:

CMRkpn,m, k, qq “ minpCMRkpn,m, k, qq, qσ
loomoon

param. enum.

CMRkpn,m, k, qqq

(3.34)
Instead when looking at the collision search complexity the number of pairs

from a list of size
?
2qσ is

`

?
2qσ

2

˘

, thus the total number of elements we need to
scan is:

ˆ?
2qσ

2

˙2

“ Opq2σq . (3.35)

Thus when n “ m “ k and r “ n´
?
n, the classical complexity is:

OpmaxpCMRkpn,m, k, qq
looooooooomooooooooon

(3.34)

, q2σ
loomoon

(3.35)

n2γ
loomoon

Gauss elim.

qq ; (3.36)
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that for a quantum computer via groverization can be reduced to:

Opmaxpqσ{2CMRkpn,m, k ´ σ, qq, qσ
loomoon

Grover

n2γ
loomoon

Gauss elim.

qq . (3.37)

If we consider just a single a pair of codewords pC,C1q of the same rank
evaluating the rank-metric isometry boils down to solving the system ACB “

C1. From this equation we can find linear equations via:

´ taking an element v in the kernel of C1, this way ACBv “ 0 and we have
that Bv lie in the kernel of C, yielding to rm´ r2 equations;

´ taking an element s in the left kernel of C1, this way sKACB “ 0 and
we have that sKA lie in the left kernel of C, yielding again to rn ´ r2

equations.

When these equations are combined with the one from Section 3.3.1 they
cannot be solved in polynomial time via linearization. However, after fixing
as C1pn, rq the complexity of this system when n “ m “ k, in [Cho+23] they
carried over the analysis leading to a classical complexity of:

Opmaxpqσ{2CMRkpn,m, k ´ σ, qq
looooooooooooooomooooooooooooooon

list enum.

, qσ
loomoon

num of pairs

¨ C1pn, rqq ; (3.38)

where σ “ p2n´rqr`n2 ´n and list sizes is Op
?
2qσq “ Opqσ{2q. Consequently

the quantum complexity goes down to:

Opmaxp qσ{4
loomoon

Grover

CMRkpn,m, k ´ σ, qq, qσ{2
loomoon

Grover

¨ C1pn, rqq . (3.39)

3.3.3 Support Splitting Algorithm

The Support Splitting Algorithm [Sen99] is a way to solve PEP (Problem 23)
in polynomial time for codes with small hull dimension.

The idea is to define a signature function SpC, iq, with i P t1, ..., nu, that it
is invariant under the action of any permutation π P Sn:

SpC, iq “ SpπpCq, πpiqq . (3.40)

Since the constant function technically is a signature function we need ad-
ditional properties for S:

´ S is discriminant if for any code C there exists i, j P r1, ns with SpC, iq ‰

SpC, jq;

´ S is fully discriminant if for any code C for all i ‰ j P r1, ns SpC, iq ‰

SpC, jq with overwhelming probability.
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Observe that if S is fully discriminant, then for any instance of PEP C, C1 “

πpCq we have that SpC, iq “ SpC1, jq if and only if j “ πpiq. So, via a fully
discriminant signature, to recover the secret map π in 2n steps is enough to
compute all the values si “ SpC, iq and s1

j “ SpC1, jq for i P r1, ns, then use that
si “ s1

j if and only if πpiq “ j. This is the core process of the so called Support
Splitting Algorithm (SSA).

The question now is if there exists an efficient fully discriminant signature.
For existence we simply have to consider the any fine grained invariant for
permutation equivalence on the punctured code Ci, for example a brute force
solution is

SpC, iq :“ tpπpCq, πpCiqq|π P Snu

from Proposition 3.8 of [Sen99].
By looking closer to this framework we can see that:

Proposition 3.17. PEP can be reduced to dPEP in polynomial time.

Proof. Suppose we have a probabilistic polynomial-time algorithm Evl that
solves dPEP , given C, C1 “ πpCq if πpiq “ j then:

πpCiq “ πpCqπpjq “ C1
j .

Then we can use again the core idea of SSA, we go through all the pairs pi, jq P

r1, ns2 and verify with Evl if pCi, C1
jq is a positive dPEP instance. If the codes

are permutation equivalent then we find that πpiq “ j. In n2 calls to Evl thus
we recover π.

Now we need to focus in finding an invariant V efficiently computable so
that the signature SpC, iq :“ VpCiq is fully discriminant. A possible idea is
the use of the weight enumerator function Wef, since the probability for two
random codes to have the same weight distribution without being equivalent is
negligible. However, this function requires the computation of weights for all
the qk codewords, thus we need to consider a smaller code. The intuition of
[Sen99] is to use the hull of the code, in fact for every permutation π:

πpHpCqq “ πpC X CKq “ πpCq X πpCKq “ πpCq X πpCqK “ HpπpCqq .

The we can finally define:

SpC, iq :“ t WefpHpCiqq,WefpHpCK
i qq .u (3.41)

By the use of the closure C b a and the reduction in Proposition 3.12 we
can use the SSA on the closure to solve also the LEP. For the particular details
on how to transform a permutation in a monomial map you can see Lemma 4
[SS13].

It is clear that the complexity of this algorithm is exponential in the di-
mension of the hull h, in particular in Proposition 7 of [BBPS21], the authors
evaluate the complexity as:

Op n3
loomoon

H

`n2 ¨ qh
loomoon

Wef

¨ logpnq
loomoon

repetitions

q
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Finally, we can note that the hull of a random code in Fnq is of small dimension
with very high probability, as showed in [Sen97; Sen99]. This implies that
PEP can be solved efficiently on a random instance, that rules out the use for
cryptographic purposes of a good chunk of codes. However there are still some
considerations to be done:

´ it is possible to generate codes with arbitrary large hulls, as shown in Sec-
tion B.0.1 of [Sae17], thus we can still use PEP instances in our algorithm,
but we should be careful during the codes generation;

´ the closure of a code on Fq with q ě 5 is always weakly self dual, as
pointed out in Proposition 6 of [SS13], thus we have a very large family
we can use as hard instances.

The Case for MCE At our current state of knowledge it is not possible to
use similar strategies for MCE, this is strongly related to the fact that there is
no reduction from the search version to the decisional one.

A possible strategy for example would be to use the matrix spaces from
[Rav16]:

MatU pnˆm,Fqq :“ tM P Fnˆm
q | colsppMq Ă Uu ,

that can substitute the role of Ei in the puncturing and shortening definition
(Definition 3.7). The problem is that, even using additional assumption like the
use of congruent matrices for the equivalence, we can only hope to try to get
the image of a dimension 1 vector, for which we have qn possibilities.

3.3.4 Relation to Graph Isomorphism

Before we have seen that when the hull of the code is trivial (i.e. C XCK “ t 0u)
the SSA does not work, however we can still solve this instances by studying
their relations with graph theory, as showed in [BOS19].

In particular we can reduce PEP on codes with trivial hull to the problem
of finding isomorphism in undirected weighted graphs, that is quasipolynomial
[Bab16].

An undirected weighted graph is a graph Γ “ pV,Eq with V a finite set of
n vertices, E the set of edges (pairs of elements in V ), associated to a function
weight : E Ñ F that associates to each edge a weight in a field F. If we order
the set of vertices as V “ t v1, ..., vnu we can represent any weighted graph as
an nˆ n matrix A, called adjacency matrix, with:

aij :“

"

0 if tvi, vju R E ,
weightptvi, vjuq otherwise .

(3.42)

Given a code C with generator matrix G and trivial hull we can associate to
a weighted graph ΓC of n vertex with the following adjacency matrix:

AC :“ GK
`

GGK
˘´1

G . (3.43)
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Remark 31. The previous construction does not depends on the particular gen-
erator matrix G, in fact if we apply a change of basis S we get:

pSGq
K
`

SGpSGqK
˘´1

SG “ GKSK
`

SK
˘´1 `

GGK
˘´1

S´1SG “ AC .

Now consider the following problem:

Problem 32 (Weighted Graph Isomorphism Problem (WGI)). Given two weighted
graphs Γ,weight and Γ1,weight1 of size n find a graph isomorphism π, i.e. a per-
mutation such that tvi, vju P E if and only if tvπpiq, vπpjqu P E1, that also
satisfies:

weightptvi, vjuq “ weightptvπpiq, vπpjquq .

If P is the matrix representation of π this is equivalent to ask:

AΓ1 “ PKAΓP .

At this point we have the following:

Theorem 3.18. Two linear codes C,C1 are permutation equivalent with respect
to the permutation π if and only if ΓC,ΓC1 are isomorph with respect to the same
permutation π.

This way PEP can be decided in time

Op nω
loomoon

matrix mult.

¨ CWGIpnqq ;

where at today state of knowledge ω » 2.373 is the best time for matrix inversion
while CWGIpnq is the complexity of deciding Problem 32.

In [BOS19] the analysis continue also to the non trivial hull case by observing
that when considering an information set I Ď r1, ns for the hull HpCq then the
shortened CzI has trivial hull. In literature this attack is also called BOS in
relation to the initials of the authors. This way in Theorem 10 [BOS19] they
proved that the complexity of deciding PEP with BOS approach for a code with
hull dimension h is asymptotically:

Op nω
loomoon

matrix mult.

¨ nph`1qh
looomooon

search info. set

¨ CWGIpnqq . (3.44)

Graph Theory Approach for MCE Also for MCE we can use results from
graph theory [BFV13] via a reduction to problems related to isomorphism of
polynomials [RST22].

In particular they prove in [RST22, Theorem 15] that, if we assume the
symmetric matrix representations of the instances having trivial automorphism
group, MCE reduces to the following problem for N “ n`m:

Problem 33 (hQMLE). Give two tuples of quadratic polynomials in
Fqrx1, ..., xN s:

F “ pf1, ..., fkq and F 1 “ pf 1
1, ..., f

1
kq
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find a linear isomorphism between them, i.e. S P GLN and T P GLk that satisfy:

F 1pxq “ pFpxSqqT .

At this point the approach resembles the Leon’s like ones. It requires the use
of a binary predicate P that is invariant under isomorphism, which is used to
generate two lists LF and LF 1 starting from F and F 1 respectively, satisfying P.
The universe for the elements of the list depends on the choice of the predicate.
At this point they search for collisions in the two lists that result in a simpler
equivalence problem via the Birthday Paradox.

In [RST22] they consider as predicate the functions FNq Q a ÞÑ dimkerDaF “

κ and FNq Q b ÞÑ dimkerDbF 1 “ κ, obtaining complexity:

Opmaxp

d

qm`n

dκ
looomooon

lists enum.

, qm`ndκ
looomooon

collisions find

qq ; (3.45)

where dκ is the probability of P being true as a function of the integer κ. In the
particular instance k “ n “ m described in Remark 30 this approach perform
poorly with respect to the one in Section 3.3.2 even for optimal choices of κ.

Remark 34. Here the Grover’s Algorithm can be used both during lists enumer-
ation and collision finding, leading to a quantum complexity of:

Opmaxp

ˆ

qm`n

dκ

˙
1
4

looooomooooon

lists enum.

,
`

qm`ndκ
˘

1
2

looooomooooon

collisions find

qq ; (3.46)

3.4 Uses and Parameters

The two isometry problems derived from coding theory are used in two of the
schemes submitted to the NIST additional call for post quantum cryptography
[NIS23]. In both these schemes Protocol 2.2.1 is instantiated with the group ac-
tions proposed in Section 3.2, rendered via the Fiat-Shamir transform to secure
digital signatures. Both these protocols benefit from optimizations proposed
in Section 2.3: fixed weight challenges, multiple bits challenges and seed tree
generation for the ephemeral elements.

3.4.1 LESS

The Linear Equivalence Signature Scheme proposed in [BMPS20; BBPS21] is
based on the Linear Equivalence Problem (Problem 22 in Section 3.2.1) and uses
the group action from Equation (3.14). The identification protocol underlying
the signature is Protocol 3.4.1.

Before discussing in details the parameters achieved by LESS we insert here
one optimizations specific for LEP based protocols.
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Public Data : Parameters n, k, q, linear rn, ks-code with generator matrix G,
group action ‹ from (3.14) and hash function H.
Private Key : Monomial map Q P Monon.
Public Key : G1 “ Q ‹ G.

PROVER VERIFIER

Get Q̃
$

ÐÝ Monon, send com “ HpQ̃ ‹ Gq
com
ÝÑ
ch

ÐÝ ch
$

ÐÝ t0, 1u.

If ch “ 0 then resp Ð Q̃. resp
ÝÑ

Accept if Hpresp ‹ Gq “ com.

If ch “ 1 then resp Ð Q´1Q̃. Accept if Hpresp ‹ G1q “ com.

Protocol 3.4.1: One round of the LESS signature.

Information Set LEP In [PS23] the authors showed how to half the commu-
nication cost of the group elements with only negligible additional computations.
The core idea is to verify the group action only on one information set.

First they define a version of LEP focused on just one information set:

Problem 35 (Information Set - Linear Equivalence Problem (IS-LEP)). Given
two linear rn, ks-codes C, C1 Ď Fnq say if they are Information Set (IS) linearly
equivalent, i.e. say if there exist monomial transformations µ̃ P Monon, ζ P

Monon´k and an information set J 1 for both C1 and rC “ rµpCq such that, given

generator matrices rG,G1 P Fkˆn
q for C̃ and C1, it must be

rG´1
J 1

rGt1,¨¨¨ ,nuzJ 1 “ ζ
´

G´1
J 1 G

1
t1,¨¨¨ ,nuzJ 1

¯

.

In Theorem 1 [PS23] they proved that two linear codes are linearly equivalent
if and only if they are IS linearly equivalent, implying immediately a reduction
between IS-LEP and LEP. With this result in mind they proceed to define
Protocol 3.4.2 for IS-LEP, that is equivalent to Protocol 3.4.1, but on challenge
ch “ 1 halves the communication cost.

We do not include here the details about the proof for the protocol (that can
be read on [PS23]), but we go through the protocol to explain the computations
done here.

First of all we have to understand more precisely the meaning of Information
Set - Linear Equivalence between the two codes. The idea is to consider a
monomial map µ̃ that generates a new code from C. The natural choice for this
monomial map is the linear equivalence between them.

We need a common information set J 1 “ tj1
1, ..., j

1
ku in these two codes, such

that, when we compute the systematic form on it (i.e. we put the columns in
J 1 in equal to the identity), the two non-systematic parts of the matrices are
identical, up to a monomial transformation.

To verify this equivalence up to monomial transformation we can consider
the orbit of all the matrices obtained via a monomial transformation, then take a
representative for this set. This is done in the protocol via the function MinLex,
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that evaluates the smaller matrix with respect to the lexicographical order of
the columns.

Remark 36. For the map µ̃ we only need to know how it acts on the information
set of cardinality k, while we are not interested in how the rest of the code is
handled, since via MinLex the non-systematic parts are confronted without the
need of the monomial map ζ. We compute these informations via the function
Trunc, that returns a sequence of integers that represent the preimage of the
information set J 1 and the sequence of coefficients of the monomial map µ̃ on
J 1. These can then be used with the function apply over G1 to retrieve the
columns associated to the information set J in the right order and scale them
up accordingly, essentially the matrix we need to invert to put G1 and G̃ on
systematic form.

This observations contains all the tools used to verify IS-Linear Equivalence
in Protocol 3.4.2.

´ The protocol start by applying a random monomial map on C. To commit
it uses SF˚, that find an information set J˚ in a deterministic way and
evaluate the systematic form on it by doing A˚ “ pG˚

J 1 q
´1G˚.

´ On challenge 0 he just need to send the ephemeral map and the verifier
repeats the commitment procedure.

´ On challenge 1 the prover consider the monomial map between C1 and
CQ, at this point as pointed out in Remark 36 he only need to send the
trunked map on the information set J˚ used for the commitment. The
verifier now simply follows the procedure explained in Remark 36.

Public Data : Parameters n, k, q, linear rn, ks-code with generator matrix G,
and hash function H.
Private Key : Monomial map Q P Monon.
Public Key : G1 “ SFpGQq.

Get Q̃
$

ÐÝ Monon, set G
˚ Ð GQ̃;

Set J˚,A˚ Ð SF˚
pG˚q

Send com “ HpA˚q
com
ÝÑ
ch

ÐÝ ch
$

ÐÝ t0, 1u.

If ch “ 0 then resp Ð Q̃. resp
ÝÑ

Set J˚,A˚ Ð SF˚
pG ¨ respq;

Accept if HpA˚q “ com.

If ch “ 1 then Q1 Ð Q´1Q̃.
presp0,resp1q

ÝÑ

Set U Ð applyppresp0, resp1q,G1q;
Set resp0, resp1 Ð TruncpQ1, J˚q Set A˚ Ð MinLexpU´1G1

r1,nszresp0
q;

Accept if HpA˚q “ com.

Protocol 3.4.2: Identification protocol equivalent to Protocol 3.4.1.

Parameters We can finally see how to instantiate the LESS signature. We
use the IS-LEP identification protocol in combination with Fixed-weight (Sec-
tion 2.3.2) and Multiple bits (Section 2.3.5) challenges, while to compress the
seeds we use a Seed Tree structure (Section 2.3.3).
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Name n k q t w s
pk

pKiBytesq
sig

pKiBytesq
KeyGen
pMcyc.q

Sign
pMcyc.q

Verify
pMcyc.q

NIST Security Level I
LESS-1b

252 126 127
247 30 2 13.7 8.4 0.9 263.6 271.4

LESS-1i 244 20 4 41.1 6.1 2.3 254.3 263.4
LESS-1s 198 17 8 95.9 5.2 5.1 206.6 213.4

NIST Security Level III
LESS-3b

400 200 127
759 33 2 34.5 18.4 2.8 2446.9 2521.4

LESS-3s 895 26 3 68.9 14.1 5.2 2984.3 3075.1

NIST Security Level V
LESS-5b

548 274 127
1352 40 2 64.6 32.5 6.4 10212.6 10458.8

LESS-5s 907 37 3 129.0 26.1 11.7 6763.2 7016.5

Table 3.1: Parameters for LESS-FM contained in the specifications [Bal+23b]
submitted to NIST.

By the combination of Corollary 2.12, Proposition 2.14, Proposition 2.16 we
have a quantum secure digital signature in the sEUF-CMA model, under the
assumption of LEP (Problem 22) hardness and Assumption 29 on the automor-
phisms of random linear codes.

Given a security parameter λ take t, w, r that satisfy:

ˆ

t

w

˙

pr ´ 1qw ě 2λ .

Then using rn, ksq random linear codes we get a public key of size:

λ
loomoon

seed

`pr ´ 1q kpn´ kqrlog2pqqs
looooooooomooooooooon

Gi weight

and a signature of size

2λ
loomoon

salt

` rt log2prqs
loooomoooon

com

`w log2

ˆ

t

w

˙

λ
looooooomooooooon

seed tree paths

`w kprlog2pqqs ` rlog2pnqsq
loooooooooooooomoooooooooooooon

IS-LEP mono. weight

.

The secure parameter choices for NIST Security Level I (λ “ 128), III (λ “

192) and V (λ “ 256) used in the submitted specifications [Bal+23b] are listed
in Table 3.1. Observe that for any level both a balanced instantiation, that
tries to optimize together public key and signature sizes (marked with b in the
name), and a low signature size oriented one are proposed (marked with s).

3.4.2 MEDS

TheMatrix Equivalence Digital Signature Scheme proposed in [Cho+22] is based
on the Matrix Code Equivalence Problem (Problem 25) and uses the group
action from Equation (3.19).
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Public Data : Parameters n, q, linear rnˆ n, ns-code with generator matrix G P Fn2
ˆn

q ,
group action ‹ from (3.19) and hash function H.
Private Key : Equivalence given by A,B P GLn.
Public Key : G1 “ pA,Bq ‹ G.

PROVER VERIFIER

Get pÃ, B̃q
$

ÐÝ GLn, send com “ HppÃ, B̃q ‹ Gq
com
ÝÑ
ch

ÐÝ ch
$

ÐÝ t0, 1u.

If ch “ 0 then resp Ð pÃ, B̃q. resp
ÝÑ

Accept if Hpresp ‹ Gq “ com.

If ch “ 1 then resp Ð pA´1Ã, B̃B´1q. Accept if Hpresp ‹ G1q “ com.

Protocol 3.4.3: One round of MEDS.

Public Key Compression The natural way to generate a public key is to
generate from random seeds an origin matrix G and the secret key, evaluate the
group action to get G1 “ pA,Bq ‹G and publish G1 as a full matrix and G via
the seed used in the generation to save space.

However in [Cho+22; Cho+23] they noted that, via generating the secret
matrices with more attention, it is possible to save some more bytes when pub-
lishing the key. The new key generation proceeds as follows.

1. Generate from a seed G P Fmnˆk
q and two codewords P1

0,P
1
1 P Fmˆn

q .

2. Generate from a secret seed a change of basis matrix T P GLk and compute
Ĝ “ TG. Label asP0,P1 P Fmˆn

q the first two codewords of the generator

matrix Ĝ.

3. Solve the following equations using as variables the entries of A and B´1:

"

AP1 “ P1
1B

´1

AP2 “ P1
2B

´1 ; (3.47)

similarly as it was done for Leon’s like attacks in Section 3.3.2. Eventually
the process can be restarted if ranks of the codewords do not match, but
this happens with negligible probability. The linear the system in (3.47)
require relatively intensive overhead computations, thus in Section 5.2
[Cho+23] the authors suggest to use as codewords P1

0,P
1
1 the identity

and the identity shifted by one, this way the system became sparse and
structured, leading to optimized solutions.

This optimization can be used for each matrix created for the public key
when using the Multiple Bits challenges (Section 2.3.5), with the caution of using
a different change of base T for each of the r´ 1 non ephemeral matrices. Thus
the final public key generated this way uses λ`pr´1qppk´2qpmn´kq`nqrlog2pqqs

bits.

Group Element Compression To reduce signature size another group el-
ement compression technique similar is proposed in [Cho+23, Section 8]. The
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process uses the same idea of retrieving the invertible matrix via two bidimen-
sional subcodes.

The optimized protocol can be seen in 3.4.4. During the commitment the
user generate via a public seed a full rank matrix R P F2ˆmn

q , i.e. two random
independent codewords, and take two random codewords in the code generated
by G using M. Then he use this pair of dimension 2 subcodes to solve Equa-
tion (3.47), as for the key generation, and get ÃM , B̃M , used to evaluate the
final code as usual.

This process is repeated in the same way during verification for ch “ 0 case,
instead for ch “ 1 the prover need to send a pair of codewords in the code
generated by G1, associated to the pair R. Since we have TGpAK b Bq “ G1

and MGpÃK b B̃q “ R we get:

R “ MGpÃK b B̃q “ MT´1G1pAK b Bq´1pÃK b B̃q “

“ MT´1G1ppA´1ÃqK b B´1B̃q . (3.48)

This way from MT´1G1 and R the verifier can recover the equivalence
pA´1Ãq,B´1B̃q and verify the commitment. Note that R is ephemeral and
can be obtained from the public seed, while the response from ch “ 0 is only
composed again by ephemeral matrices, while for ch “ 1 only the 2 ˆ k matrix
MT´1 is sent, cutting the communication cost to r2 ¨ k ¨ log2pqqs bits.

Public Data : Parameters n, k,m, q, linear rmˆ n, ks-code with generator matrix G,
pair of codewords P1 P F2ˆnm

q used for key generation and hash function H.
Private Key : Equivalence given by A P GLm,B P GLn and change of basis T P GLk.
Public Key : G1 “ pA,Bq ‹ G.

Get R
$

ÐÝ F2ˆmn
q , M

$
ÐÝ F2ˆk

q ;
Solve (3.47) using the pairs MG and R

and get Ã P GLm, B̃ P GLn;

Send com Ð HppÃ, B̃q ‹ Gq
com,R
ÝÑ
ch

ÐÝ ch
$

ÐÝ t0, 1u.
If ch “ 0 then resp Ð M.

resp
ÝÑ

Solve (3.47) using the pairs

resp ¨ G and R and get Ã1, B̃1;

Accept if HppÃ1, B̃1q ‹ Gq “ com.
If ch “ 1 then resp Ð MT´1.

presp0,resp1q
ÝÑ

Solve (3.47) using the pairs

resp ¨ G1 and R and get Ã1, B̃1;

Accept if HppÃ1, B̃1q ‹ G1q “ com.

Protocol 3.4.4: Identification protocol equivalent to Protocol 3.4.3.

Parameters We can finally instantiate also the MEDS signature, to do that
we can use again Fixed-weight (Section 2.3.2) and Multiple bits (Section 2.3.5)
challenges, while we compress seeds via a Seed Tree structure (Section 2.3.3)
and public key using the procedure presented before.
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Parameter Set q
n “

m “ k
r t w

pk
pBq

sig
pBq

sig˚

pBq

KeyGen
pMcyc.q

Sign
pMcyc.q

Verify
pMcyc.q

NIST Security Level I
MEDS-9923

4093 14
4 1152 14 9’923 9’896 2’264 1.90 518.05 515.58

MEDS-13220 5 192 20 13’220 12’976 2’544 2.51 88.90 87.48

NIST Security Level III
MEDS-41711

4093 22
4 608 26 41’711 41’080 5’344 9.80 1467.00 1461.00

MEDS-69497 5 160 36 55’604 54’736 5’135 12.82 387.27 380.70

NIST Security Level V
MEDS-134180

2039 30
5 192 52 134’180 132’528 9’496 44.75 1629.84 1612.57

MEDS-167717 6 112 66 167’717 165’464 9’653 55.83 961.80 938.89

Table 3.2: Parameters for MEDS contained in the specifications [Cho+23] sub-
mitted to NIST.

By the combination of Corollary 2.13, Proposition 2.14, Proposition 2.16 we
have a quantum secure digital signature in the sEUF-CMA model, under the
assumption of MEC Problem (Problem 25) hardness and Assumption 29 on the
automorphisms of random linear matrix codes.

Given a security parameter λ consider t, w, r (as used in Section 2.3) satis-
fying:

ˆ

t

w

˙

pr ´ 1qw ě 2λ .

When using rnˆ n, nsq random linear codes we get a public key of size:

λ
loomoon

seed

`pr ´ 1qnpn2 ´ 3n` 3qrlog2pqqs
loooooooooooooomoooooooooooooon

Gi weight compressed

and a signature (without using group element compression) of size

2λ
loomoon

salt

` rt log2prqs
loooomoooon

com

w log2

ˆ

t

w

˙

λ
looooooomooooooon

seed tree paths

`w 2n2rlog2pqqs
loooooomoooooon

pA,Bq weight

.

When using the group element compression the signature size goes down to

2λ
loomoon

salt

` rt log2prqs
loooomoooon

com

`w log2

ˆ

t

w

˙

λ
looooooomooooooon

seed tree paths

`w r2 ¨ n ¨ rlog2pqqss
looooooooomooooooooon

pA,Bq compr. weight

(3.49)

The secure parameter choices for NIST Security Level I, III and V used in
the submitted specifications [Cho+23] are listed in Table 3.2. Observe that for
any level they have two instantiations, one with smaller key and signature size
and another with smaller number of rounds t, which decreases significantly the
signing and verification time.

Note that in the round 1 specifications the group element compression was
not used since it needs further study and ad-hoc parameter choices. Thus we
inserted the signature sizes from the specifications in the eighth column, while
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in the ninth one (sig˚)we have estimated by our selves the signature size with
the group compression technique to give an idea of the effectiveness of the idea.

Remark 37. During the write up of this thesis a new optimization for MEDS
and LESS signature size has been proposed by Chou, Persichetti, and Santini
in [CPS23].
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CHAPTER

FOUR

THRESHOLD FUNCTIONALITIES

In this chapter we start by briefly recalling some notions for threshold signature
schemes, using as reference [GJKR96] and other texts from the literature, but
trying to adapt the notation to the one used before. Then in Section 4.1 we
design a full threshold scheme for any group action and, after discussing the
security concerns associated to the construction, we prove its security. Suc-
cessively we proceed in leveraging it to a general threshold scheme. Finally, in
Section 4.4, we explain how to use the construction to obtain a threshold version
of the LESS and MEDS signature, adapting also optimizations from Section 2.3
and 3.4.

Secret Sharing Threshold signatures often require to share some secret s in
a field F. Here we highlight two of the most common algorithm to do so.

´ Replicated secret sharing schemes define additive shares for a secret in a
ring, then each share is sent to a particular subset of user so that only
authorized set of users can have access to all the shares. This technique
was introduced in [ISN89], but can be read also in [CS20; BBY20]. The
ideas can be used in the same way also for abelian groups and, with some
drawbacks, also in the non-abelian ones (the interesting situations for us).

´ Linear secret sharings schemes are the most efficient way to achieve it.
They require that each authorized set of users is able to efficiently compute
a linear transformation on the shares which outputs the secret s. The main
examples are the Shamir’s scheme (the most used one, [Sha79]) and the
Blakley’s scheme ([Bla79]).

Briefly the idea of the first is to consider a polynomial f of degree T ´ 1,
then share to Pi the value fpiq, while the secret is s “ fp0q. Through
linear Lagrange interpolation any T parties can recover the secret fp0q.

Communication Model We take into consideration a set of n users (or
parties) P1, ..., Pn that can compute probabilistic polynomial-time algorithms.
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We assume that each user has access to a secure, reliable and authenticated
private channel with each of the other users. There is also for each user a
broadcast channel that may be use to send authenticated messages to all the
other parties. Here we are not interested in the specific design and peculiarities
of the channel, such as latency and noise during messages exchanges.

We finally give a formal definition of a threshold signature defined with re-
spect to a “centralized” digital signature. The idea behind a threshold signature
scheme is to allow any subset of T out of N user that agree on a message m
to sign it so that it results signed by the whole group, while this should be
unfeasible in probabilistic polynomial-time by any smaller group of T ´1 or less
users. Note that setup and verification are the same of the centralized one.

Definition 4.1. Give a digital signature DS “ pDS.Setup, DS.KeyGen, DS.Sign,
DS.Verifyq defined according to Definition 1.1 a pT,Nq-threshold signature for
DS for the users P1, ..., Pn is a tuple TDS.DS= pDS.Setup, TDS.KeyGen, TDS.Sign,
DS.Verifyq where:

´ DS.Setup, DS.Verify are the same for the original signature scheme, also
referred as centralized scheme.

´ TDS.KeyGenpppq Ñ ppk, sk1, ..., skN q, on input the public parameters pp
returns a public key and N secret keys. Each of secret keys ski is known
by only by the user Pi. There exists also a master secret key sk, not nec-
essarily computed explicitly, associated to pk that can be recovered from
any subset of T secret keys in polynomial time. The Key Generation my
be run by a trusted third party (in this case we say that it is a centralized
key generation) or by the N users collectively (called decentralized key
generation).

´ TDS.Signptskij uK
j“1,mq Ñ sig, on input the secret keys of a set of T distinct

users and a message m the algorithm is run by the T users collectively. It
outputs a signature sig.

Since KeyGen and Sign may be run collectively we refer as the view of a set of
users as the probability distribution on the transcripts of all the data available
to them during the execution of the protocol, like the secret keys, the message
m, the signature; but also the outputs received by the other parties necessary
to complete the protocols executions.

Remark 38. In general we may allow also the possibility that a threshold signa-
ture is designed from scratch without a centralized scheme, but this case is not
of interest to us now.

As for classical signature scheme the main security property for threshold
signature schemes is Existential Unforgeability under Chosen Message Attacks
(EUF-CMA). We present it below the version of threshold signature schemes.

Definition 4.2. A threshold digital signature TDS.DS is secure in the EUF-
CMA if for any probabilistic polynomial-time adversary Evl that is allowed to:
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1. Query a key generation oracle that runs DS.Setup and TDS.KeyGen for
the public parameters pp and the public key pk (but not the private key);

2. Corrupt T ´ 1 out of N users and know their private keys ski;

3. In the case of a decentralized key generation he get also access to the view
of the protocol TDS.KeyGen;

4. Perform a polynomial number of query to a signing oracle that on chosen
messages mi obtaining the view of TDS.Sign (also on the non-corrupted
users);

it is not able to obtain a valid signature on a non queried message, i.e.

P
„

DS.Verifyppk,m˚, sig˚
q “ 1

ˇ

ˇ

ˇ

ˇ

m˚, sig˚
Ð Evl ,

m˚ ‰ mi @i .

ȷ

ď neglpλq (4.1)

Informally the idea is that T ´1 views cannot be combined to obtain a valid
signature. A stronger security requirement from [GJKR96] would be that the
views actually does not contain any information (similarly how we ask for Σ-
protocols with the zero-knowledge property). This can be formalized as follows:

Definition 4.3 (Definition 3 [GJKR96]). A threshold signature scheme TDS.DS
is simulatable if:

´ When decentralized the protocol TDS.KeyGen is simulatable. That is,
there exists a simulator SimKeyGen for any adversarial set of users that, on
input the public key pk and the outputs generated by an execution of the
key generation from the adversary, can simulate the view of the adversary
on that execution.

´ The protocol TDS.Sign is simulatable. That is, there exists a simula-
tor SimSign that, on input the public input of Sign, T ´ 1 private keys
ski1 ,...,skiT´1

, and a signature sig of m, can simulate the view of the ad-
versary on an execution of Sign that generates sig as an output.

When the centralized signature is unforgeable and the threshold version is
simulatable, then also the threshold signature is unforgeable [GJKR96].

4.1 The Full Threshold Scheme

We start our analysis in the simpler case, the full threshold one, in which
T “ N , i.e. all the users are required to participate to produce a signature.

Given a cryptographic group action pG,X, ‹q with origin element x P X we
can consider a secret key given by the product of N random group elements:

g “ gN ¨ ¨ ¨ g1. (4.2)
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Thus the public key is y “ g ‹ x and to each user Pi is given the share gi. In
Section 4.1.3 we show how to obtain a decentralized key generation for it. Also
the users receive the intermediate set elements xj “ gj ‹ xj´1 used to evaluate
the public key y “ xN .

First we can consider in Protocol 4.1.1 a natural threshold computation for
the classical Identification Protocol 2.2.1.

Public Data Parameters : Group G acting on X via ‹, element x P X and hash function H.
Private Key : Group element g “ gN ¨ ¨ ¨ g1 with gi P G.
Shares for Pi : Group element gi, set elements xj “ gj ¨ ¨ ¨ g1 ‹ x for all j.
Public Key : y “ g ‹ x.

PROVERS VERIFIER
Set x̃0 Ð x and for i “ 1, ..., N do :

com
ÝÑPi get g̃i

$
Ð G and set x̃i Ð g̃i ‹ x̃i´1

Set com “ Hpx̃N q.
ch

ÐÝ ch
$

Ð t0, 1u.
Set resp Ð e.

resp
ÝÑfor i “ 1, ..., N do : If ch “ 0 accept if Hpresp ‹ xq “ com.

Pi set resp Ð g̃i ¨ resp ¨ g´ch
i . If ch “ 1 accept if Hpresp ‹ yq “ com.

Protocol 4.1.1: Full threshold identification protocol for the knowledge of the
Private Key.

An relevant limitation of the proposed protocol is that each user Pi need to
receive the set element x̃i´1 by Pi´1 before starting its computations. Thus as
explained in [DM20] it is necessary to adopt a sequential round-robin communi-
cation structure that makes impossible to parallelize the algorithm and combine
the output of each party later, slowing down the execution. Moreover the users
need to agree upon a precise execution order at the beginning of the execution.

Remark 39. When the action is induced by an abelian group (like isogenies over
supersingular elliptic curves) the response phase can be compressed further since
each party can simply disclose g̃i

ch
¨ gi to combine them later as the following

product (or actually the sum as in [DM20; CS20])

N
ź

i“1

gi
´ch ¨ g̃i “ g´ch

N
ź

i“1

g̃i .

The most natural idea would be to apply the Fiat-Shamir transform on it,
by evaluating the challenge as:

ch “ Hpx1N }...}xλN }mq ,

to obtain a secure threshold signature, which can be read in Algorithm 6.
However, the above construction is secure only in the honest-but-curious

adversary model, for example in [DM20] they prove that this protocol is simu-
latable under the assumption of the hardness of Problem 7.
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x0 x1 xN´1 xN

x̃1

x̃N´1

x̃N

g̃1 ‹

g1 ‹ gN ‹

g̃N ‹

Figure 4.1: Scheme representing the idea behind Protocol 4.1.1. In blue there
are the ephemeral group elements revealed on ch “ 0, while in red the map
reconstructed for ch “ 1.

Algorithm 6 TDS.Sign, no active security

Require: x P X, a security parameter λ, a hash function H, a public key px, y “

g ‹ xq. The party Pi knows the (multiplicative) share gi of g “ gN ¨ ¨ ¨ g1.
Ensure: A valid signature for the message m under the public key px, yq.
1: Set xj0 “ x for all j “ 1 to λ Ź Shared commitment generation phase
2: for i “ 1 to N do
3: If i ą 1 Pi receives x

j
i´1 from Pi´1 for all j “ 1 to λ

4: for j “ 1 to λ do
5: Pi chooses g̃

j
i P G and computes xji “ g̃ji ‹ xji´1

6: Pi outputs x
j
i ;

7: Set xj “ xjN for all j “ 1 to λ
8: Compute ch “ Hpx1}...}xλ||mq Ź Non-iterative challenges evaluation
9: Set uj0 “ e for all j “ 1 to λ Ź Shared response generation phase

10: for i “ 1 to N do
11: If i ą 1 Pi receives u

j
i´1 from Pi´1 for all j “ 1, ..., λ

12: for j “ 1 to λ do

13: Pi computes uji “ g̃ji u
j
i´1g

´chj
i ;

14: Pi outputs u
j
i ;

15: respj “ ujN for all j “ 1 to λ;
16: sig “ ch||resp1||...||respλ
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In fact the scheme can be attacked by a malicious adversary tempering with
it by opening several concurrent sessions. Suppose the adversary is in control
of the N -th user and want to sing the message m for the public key y “ g ‹ x
knowing only gN . He can proceed in the following way:

1. The adversary start λ signing sessions for any messages m1,...,mλ.

2. For any session s he receives by PN´1 x
1
N´1, ..., x

λ
N´1. At this point he

evaluates x1N “ g̃1N ‹ x1N´1 for each session s as described in the protocol.
Lets call this element x̂s for each session.

3. Evaluate the challenge ch “ Hpx̂1}...}x̂λ}mq.

4. For each session s now he evaluates x2N , ..., x
λ´1
N legitimately, then he

chooses g̃λN so that the first bit of Hpx1N }...}xλN }miq is equal to the s-th bit
of ch. This point can be simply adapted to more general challenge spaces
and be evaluated in probabilistic linear time on the challenge space.

5. He then closes all the concurrent sessions obtaining for the session s the
response u1N´1 received from PN´1 can be used to evaluate resp1. Lets
call this ˆresps; we can use it to answer chs. In this way we have obtained
a valid signature ch} ˆresp1}...} ˆrespλ.

By this example we see that the key point for the adversary was the possi-
bility of imposing a condition on the challenges, via the freedom of choice in the
evaluation of the commitment, used to evaluate the H. To have a secure scheme
we should avoid this possibility.

4.1.1 Sashimi Solution

The first solution proposed in [CS20] consists in the use of additional non-
interactive Zero-Knowledge proofs. These ZKPs need to prove the existence of
a witness h for the following relation

q
ľ

j“0

yj “ h ‹ xj . (4.3)

The protocol presented below is a generalization of the one presented in
Section 3.1 of [CS20], for a generic group action.

Proposition 4.4 ([CS20], [BDPV21]). The protocol in Protocol 4.1.2 can be
rendered to a non interactive computationally zero-knowledge quantum proof of
knowledge for a free weakly pseudorandom group action (Definition 2.6) in the
QROM.

Proof. First we prove that the underlying protocol is sound and computationally
zero-knowledge, since the completeness is straightforward. We need to prove
soundness and zero knowledge.
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Public Data : xa, xb P X and hash function H.
Private Key : Group element g P G.
Public Key : yj “ h ‹ xj for j “ 0, ..., q.

PROVER VERIFIER

Choose g̃
$

Ð G and set:
com
ÝÑx̃j “ g̃ ‹ xj for j “ 0, ..., q.

Set com “ Hpx̃0}...}x̃qqq.
ch

ÐÝ ch
$

Ð t0, 1u.
If ch “ 0 then resp “ g̃. resp

ÝÑ
Accept if Hpresp ‹ x0}...}resp ‹ xqq “ com.

If ch “ 1 then resp “ g̃h´1. Accept if Hpresp ‹ y0}...}resp ‹ yqq “ com.

Protocol 4.1.2: Identification protocol to prove relation 4.3.

´ Soundness: suppose that the Prover is able to answer both the challenges
with u0 and u1, by the collision resistance of the hash function at this point
we would retrieve h as u´1

1 u0 against the one-wayness of the group action
(thus also against weak pseudorandom) and having that the public keys
are generated by the same group elements.

´ Zero Knowledge: to simulate the protocol without knowing the secret g
and for any pairs of elements pxa, yaq, pxb, ybq the Prover flips a coin c. If
c “ 0, the Prover follows the protocol normally and is able to answer the
challenge if b “ 0. If c “ 1, it computes x̄a “ ḡya and x̄b “ ḡyb and sends
them in place of x̃a and x̃b. In this way it is able to answer to the challenge
b “ 1. Thus, if c “ b the prover can convince the verifier, otherwise it
rewind the verifier and try again. Since at every iteration the prover has
probability 1

2 of guessing the correct c the simulation ends in expected
polynomial time. Note that this transcript is indistinguishable from the
honestly-obtained one, because a distinguisher between the honestly gen-
erated transcripts and the simulated one can be used to distinguish pairs
px̄, h ‹ āq from random ones, against the pseudorandomness.

For the quantum resistance we can observe that since the automorphisms are
all trivial the sigma protocol has perfect unique responses (see [Blä+22, Lemma
1], the perfect uniqueness response version of Lemma 2.11) then by [DFMS19,
Theorem 25] (perfect uniqueness response version of Theorem 1.15) the protocol
is a quantum proof of knowledge. Then the protocol has completeness, high min
entropy1 and HVZK and is zero-knowledge against quantum adversaries thanks
to [Unr17].

In our case we have q “ 1 and the relation we want to prove for the com-
mitment phase is:

yi “ g̃i ‹ x^ xi “ g̃i ‹ xi´1 ;

where yi are committed at the start of the protocol with a ZKP proving the
relation yi “ g̃i ‹x. Then the each user applies the random group element g̃i on

1i.e. the probability of guessing the commitment is negligible
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the received set element and produces a non-interactive zero-knowledge proof
for the above relation, which is verified from the other parties. In this way it is
not possible for any adversary to deviate from the protocol and the signature
can be simulated also for a malicious adversary. The similarity between Proto-
col 4.1.2 and Protocol 2.2.1 is straightforward, thus producing non-interactive
zero-knowledge proof is equivalent to a classical signature, with the only differ-
ence that the number of group actions is multiplied by q ` 1.

Since this schemes are designed for a post-quantum scenario we have also
verified that the non-interactive ZKP is secure in the quantum random oracle
model. For this reason we require the additional assumption that the action is
free. Note that it would also be enough to ask that the group action is free to
use Corollary 2.13.

Even if this scheme achieves the desired level of the security its main draw-
back is the number of ZKP necessary for a secure execution, λ for each user for
every single signature. In isogeny-based group actions this implies, in combi-
nation with the sequential communication model, an important slow down due
to difficulties in computing group actions. In [CS20] they estimate that when
implemented for CSI-FiSh ([BKV19]) each party has a latency of 238 s, almost
5 minutes! Also for code-based group actions we have this problem, adjoined
by the fact that ZKPs would require heavy bandwidth use. Using LESS-1b
parameters, assuming a signature and verification time of around 50 ms from
[Bal+23b, Table 7], each non-interactive ZKP would require around 100 ms
(since the number of group actions is doubled in Protocol 4.1.2). So the latency
due to the generation and verification of the 128 non-interactive ZKPs is around
25 s.

4.1.2 A Salty Solution

As said before, when using a seed tree optimization for the centralized signature,
an hash salting technique is necessary to preserve the security level. In this
section we show how to use a similar idea to avoid excessive use of ZKP to
control the adversary’s behaviour

The modifications to the protocol works as follow:

´ Each party Pi chooses a random salti P t0, 1u2λ and commits themselves
to it.

´ The protocol continues normally until the last step before the computation
of ch.

´ PN broadcast x1, ..., xλ to all players. Then each party reveals salti. Each
party checks that each revealed value matches the corresponding commit-
ment.

´ All the party can compute ch “ Hpx1}...}xλ}salt}mq where salt is defined
as salt “

ř

ipsaltiq.
2

2Other combining functions for the computation of salt are possible, as long as the adversary
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´ During the response computations the parties verify the received partial
responses.

In the commitment phase, each user Pi receives x
j
i´1, computes xji “ g̃ji ‹xji´1

for random g̃i and outputs it. During the response phase (lines 17,18) Pi get

uji´1 and outputs uji “ g̃ji u
j
i´1g

´chj
i . In line 19 for the challenge chj “ 0 the

parties verify that x̃ji “ uji ‹ x, while in the other case they check x̃ji “ uji ‹ xi.

Algorithm 7 TDS.Sign

Require: x P X, security parameter λ, hash function H, public key px, y “

g ‹ xq, secure commitment scheme COM. The party Pi knows the (mul-
tiplicative) share gi of g “ gN ¨ ¨ ¨ g1 and all the intermidiate set elements
xj “ gj ¨ ¨ ¨ g1 ‹ x.

Ensure: A valid signature for the message m under the public key px, yq.
1: Set xj0 “ x for all j “ 1 to λ Ź Shared commitment generation phase
2: for i “ 1 to N do
3: Each party pick salti randomly and sends COMpsaltiq

4: for i “ 1 to N do
5: If i ą 1 Pi receives x

j
i´1 from Pi´1 for all j “ 1 to λ

6: for j “ 1 to λ do
7: Pi chooses g̃

j
i P G and computes xji “ g̃ji ‹ xji´1

8: Pi outputs x
j
i ;

9: Set xj “ xjN for all j “ 1 to λ. Party N broadcasts all xj to all players.
10: Each party publishes salti and checks the consistency of the received data

with the initial commitment.
11: salt “

ř

i salti
12: Compute ch “ Hpx1}...}xλ}salt}mq Ź Non-iterative challenges evaluation
13: Set uj0 “ e for all j “ 1 to λ Ź Shared response generation phase
14: for i “ 1 to N do
15: If i ą 1 Pi receives u

j
i´1 from Pi´1 for all j “ 1, ..., λ

16: for j “ 1 to λ do

17: Pi computes uji “ g̃ji u
j
i´1g

´chj
i ;

18: Pi outputs u
j
i ;

19: All users verify uji is valid;

20: respj “ ujN for all j “ 1 to λ;
21: sig “ ch}salt}resp1}...}respλ.

Thus the final version of the threshold signature can be read in Algorithm 7.
The verification procedure is the same to the standard one and is reported in
Algorithm 8 for completeness.

Note that, to verify the responses, the parties not only need their secret
share, but also the intermediate set elements xi and x̃ji . In fact, during the

is not able to bias the distribution of it without knowing all the salti, including the one of the
honest party
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commitment phase, each user Pi receives xji´1, computes xji “ g̃ji ‹ xji´1 for

random g̃i and outputs it. During the response phase (lines 17,18) Pi get u
j
i´1

and outputs uji “ g̃ji u
j
i´1g

´chj
i . In line 19 for the challenge chj “ 0 the parties

verify that x̃ji “ uji ‹ x, while in the other case they check x̃ji “ uji ‹ xi.

Algorithm 8 Verify

Require: x P X, the security parameter λ, a hash function H, a public key
px, y “ g ‹ xq.

Ensure: Accept if the signature for the message m is valid under the public
key px, yq.

1: Parse ch, salt, resp1, ..., respλ from σ
2: for j “ 1 to λ do
3: if chj “ 0 then
4: set x̂j “ respj ‹ x
5: else
6: set x̂j “ respj ‹ y

7: Accept if ch “ Hpx̂1}...}x̂λ}salt}mq

We need now to prove its security.

Theorem 4.5. For a free cryptographic group action, if the centralized signa-
ture is unforgeable in the quantum random oracle model, then the full-threshold
signature scheme (Algorithm 7) is EUF-CMA secure in the quantum random
oracle model, as required in Definition 4.2.

The proof of Theorem 4.5 follows the game-based argument proposed in
[GHHM21, Theorem 3]. The key idea is to reduce the security of the full
threshold signature to the security of the centralized one. We need 3 games
(Algorithm 9), and we need to reprogram the random oracle, thanks to The-
orem 1.16. We discuss later how to insert also a Distributed Key Generation
algorithm in the proof.

Proof Theorem 4.5. Consider a probabilistic polynomial-time adversary Evl that
make up to qs sign queries and qh quantum call to the random oracle H. Con-
sider the games from Algorithm 9. Since the protocol TDS.Sign is executed in
multiparty, if by any reason the protocol is aborted because of Evl misbehaviour,
the game ends and returns 0.

Game G0. This game is the same one played for the EUF-CMA security in
Definition 4.2, thus PrGEvl

0 Ñ 1s “ AdvEvlCMA by definition.

Game G1. In this game nothing is changed but we set ch at random and we
reprogram the random oracle. We can observe that any statistical difference
between the games can be used to build a distinguisher for the reprogramming
of the oracle as the one in Theorem 1.16; in particular we can adapt the distin-
guisher from the proof of [GHHM21, Theorem 3]. In total, we reprogram the
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x0 x1 x2 x3

x̃1

x̃2

x̃3

g̃1 ‹

g1 ‹ gi0 ‹ g3 ‹

ch“1
ch“0

g̃3 ‹

Figure 4.2: Example of simulation for N “ 3 and i0 “ 2, in red the missing link,
while in blue the elements used to generate xi0 and to answer the challenge.

oracle qs times (one for every signature) and Evl performs qh quantum calls.
Moreover, note that x1, ..., xλ,m are (at least partially) controlled by the adver-
sary, while salt is randomly sampled thanks to the initial commitments and the
secure aggregation, so the random set is X1 “ t0, 1u2λ. Thus, by Theorem 1.16
we have:

|PrGEvl
0 Ñ 1s ´ PrGEvl

1 Ñ 1s| ď
3gs
21`λ

?
qh (4.4)

Game G2. First of all, note that during the computation of the response, it
is possible to check whether the received uji is correct or not, if the user i ` 1
saved all the xi during the key generation step. We exploit this property in our
simulation. Indeed, to simulate a signature, the simulator first acts honestly
and follows the protocol. Upon receiving all the responses uji of P1, ..., Pi0´1,
it checks the correctness of all of them. If they are all correct, it rewinds
the adversary up until receiving x̃i0´1 and chooses x̃i0 according to challenge
chj (Figure 4.2 shows schematically of how the simulation strategy works). In
particular:

´ linking x̃i0´1 and x̃i0 on challenge chj “ 0;

´ linking xi0 and x̃i0 on challenge chj “ 1;

The idea is that every time the adversary acts honestly until Pi0 , the simulator
produces an indistinguishable transcript that is not rejected during the response
computation. When, instead, the adversary sends wrong data before Pi0 , the
simulator follows the protocol normally. Even if it would not be able to answer
to the challenge, that step is never reached, since the error allows for an early
abort. Thus the simulation is perfect.

We have shown thatG2 simulates the multiparty signature protocol TDS.Sign,
thus we need to bound the distance between the two last games. We are able
to prove that the two views have the same distribution, implying null game
distance.
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If the simulator spots an error and aborts, the simulation is correct and in-
distinguishable from the real execution, since Pi0 followed the protocol normally.
If the simulator rewind the adversary, then the view is given by salti0 , x

j
i0
, g̃ji0

for all j “ 1, ..., λ. The salt and the group elements are uniformly distributed
both in the signature and in the simulation, so they are indistinguishable even
for an unbounded adversary. Also for j with chj “ 0 the set elements xji0 are
indistinguishable since the simulator is just following the protocol TDS.Sign.

For j with chj “ 1 we consider the tuples px̃ji0´1, x̃
j
i0

q with x̃ji0 “ g̃ji0 ‹ x̃ji0´1

in the honest execution and x̃ji0 “ g̃ji0 ‹ xi0 in the simulated ones.

We have rewound Evl, so we know that x̃ji0´1 “ uji0´1 ‹ xi0´1 P Opxi0´1q “

Opxq. Since the group action is free, there exists a unique h̃ with x̃ji0 “ h̃‹ x̃ji0´1.

The element h̃ has the same distribution as g̃ji0 thanks to the uniqueness of the
solution; it follows that these pairs are again indistinguishable.

Finally, we observe that game G2 is executed entirely without the use of the
secret share gi0 , thanks to the simulation, and so succeeding in the game implies
being able to forge a signature for the centralized scheme in the quantum random
oracle. Since we assumed quantum unforgebility for the centralized signature,
this probability is negligible. Combining all the game distances we prove the
desired reduction by the resulting equivalence:

AdvEvlCMA ď
3gs
21`λ

?
qh ` neglpλq .

Remark 40. Note that the rewinding procedure (lines 16-21, Algorithm 9) is
not necessary when the action is regular, in fact in this case surely x̃ji0´1 P

Opxi0´1q “ Opxq, thus they are again indistinguishable. Still the checks in line
19 for Algorithm 7 can not be omitted, since otherwise the simulation would
lead to a valid signature even for invalid responses sent by the corrupted users
Pi0´1.

4.1.3 Distributed Key Generation

We now proceed in defining a secure distributed key generation mechanism,
introduced in [CS20]. The idea is fairly simple: the users sequentially apply
a previously committed random group element to the origin x and add the
non-interactive Zero-Knowledge proof in Protocol 4.1.2 to show the freshness
of the group element. You can see the protocol in Algorithm 10. At line 5 the
Zero-Knowledge Proof is sent and tested by the other parties, the protocol is
trusted by all of them if and only if all the ZKPs are valid. The distributed
key generation de facto is a multiparty computation protocol used to jointly
generate from an origin x P X a set element in its orbit that cannot be biased
by any strict subset of the users. This construction strongly resembles in fact the
distributed trusted-setup protocol for the generation of a supersingular elliptic
curve with unknown endomorphism ring defined in [Bas+23].
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Algorithm 9 Threshold Signature Simulation

1: procedure Games G0 ´G1 ´G2

2: Evl chose at least a non corrupted user Pi0 ;
3: Execute KeyGen with Evl;
4: m˚, σ˚ Ð EvlSign,|Hy;
5: return DS.Verifyppx, yq, σ˚,m˚q ^ m˚ R SM .

6: procedure Sign(m)
7: SM Ð SM Y tmu;
8: Run TDS.Signpm, gi0q up to line 11; Ź G0 ´G1

9: ch Ð Hpx1}...}xλ}salt}mq; Ź G0

10: Get ch
$

ÐÝ t0, 1uλ; Ź G1

11: H Ð Hpx1
}...}xλ

}salt}mqÞÑch; Ź G1

12: Run TDS.Signpm, gi0q to the end; Ź G0 ´G1

13: Run Sim.TDS.Signpmq; Ź G2

14: return salti0 , x̃
j
i0
, uji0 for all j.

15: procedure Sim.TDS.Sign(m, gi for i ‰ i0)
16: Run TDS.Signpm, gi0q until line 15.
17: Check all the uji0´1 received.

18: if At least one uji0´1 is not correct then:
19: return 0 Ź Abortion in TDS.Sign
20: else
21: Rewind Evl to line 4 after having received xji0´1

22: for j “ 1, ..., λ do
23: Get g̃ji0 Ð G;

24: Set g̃ji0 Ð g̃ji0 ¨ pgN ¨ ¨ ¨ gi0`1q´chj ;
25: if chj “ 0 then

26: output xji0 “ g̃ji0 ‹ xji0´1;
27: else
28: output xji0 “ g̃ji0 ‹ y;

29: After receiving xjN , open salti0 ;
30: if salti are correct then
31: compute salt “

ř

i salti;
32: else return 0 Ź Abortion in TDS.Sign

33: H Ð Hpx1
}...}xλ

}salt}mqÞÑch;
34: Output uji0 “ g̃ji0 for all j;
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Algorithm 10 TDS.KeyGen

Require: x P X origin.
Ensure: Public key y “ g ‹ x, each participant holds gi such that

ś

gi “ g.
1: Each participant Pi chooses gi P G and publishes x1

i “ gi ‹ x.
2: Set x0 “ x.
3: for i “ 1 to N do
4: Pi computes xi “ gi ‹ xi´1

5: Pi publishes a ZKP as in Protocol 4.1.2 proving x1
i “ g̃i‹x^xi “ g̃i‹xi´1.

6: Pi sends xi to Pi`1 (if i ă N)

7: return y “ xN . The private key of Pi is gi.

Thanks to the use of Zero-Knowledge proofs we have the following security
result

Lemma 4.6. For a weakly pseudorandom free group action (Definition 2.6), the
protocol TDS.KeyGen can be simulated in the quantum random oracle model in
polynomial time so that any probabilistic polynomial-time adversary is convinced
that the public key is any fixed pair x, y P X.

The main idea of the proof (contained in [CS20]) is to the ZKPs to recover
their secret shares and simulate a view of the protocol. Differently by [CS20]
here we only have one ZKP for any user, thus we rely in rewinding the tape to
change the sent set element sent in state 6. Moreover because of this we need
an additional assumption since GAIP alone is not enough. This proof works
in the quantum random oracle model since the protocol in Protocol 4.1.2 is
a non-interactive zero-knowledge quantum proof of knowledge in the quantum
random oracle for a free group action (Proposition 4.4).

As a consequence we can combine the result with Theorem 4.5 to obtain:

Corollary 4.7. For a weakly pseudorandom free group action, if the centralized
signature is unforgeable in the quantum random oracle model, then the full-
threshold signature scheme composed by TDS.DS.KeyGen, TDS.Sign (Algorithms
10 and 7) and the verification DS.Verify is EUF-CMA secure in the quantum
random oracle model.

Proof of Lemma 4.6. Algorithm 11 shows the simulation strategy for a proba-
bilistic polynomial-time adversary Evl. We now need to prove that the simula-
tion terminates in expected polynomial time, it is indistinguishable from a real
execution, and outputs y.

The simulation terminates in polynomial time with non-negligible probabil-
ity if also Evl is a probabilistic polynomial-time algorithm; in fact we have to
carry over:

´ one rewind of Evl in line 6;
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´ at most N ´ 1 extractions of secrets from the ZKPs, that can be carried
over in polynomial time using the Forking Lemma (Lemma 1.12) on the
single ZKP. The probability for the adversary to fake the ZKP where a
share does not exists is negligible, assuming the one-wayness of the group
action.

Note that the rewinding can be performed since the adversary has already
committed to the values gi before the rewinding phase. In addition, thanks to
the ZKPs, these group elements must exist, and the adversary is forced to apply
them on xi0 “ pg´1

i0`1...g
´1
N q‹y, so that the output of the simulation is the public

key x, y as desired.

To send the crafted element xi0 and simulate the ZKPs in lines 7 and 8,
we need the weakly pseudorandom property (Definition 2.6). This is because
a common group element gi0 such that x1

i0
“ gi0 ‹ x ^ xi0 “ gi0 ‹ xi0´1 does

not exist anymore. The simulation can be carried over in the quatum random
oracle since the protocol in Protocol 4.1.2 is a non-interactive zero-knowledge
quantum proof of knowledge (see Proposition 4.4).

Algorithm 11 Simulation of TDS.KeyGen

Require: x, y P X, a non corrupted user Pi0 .
1: Send to Evl a random x1

i0
generated from x (as normal);

2: Checks all the ZKP for i ă i0 (as normal);
3: Send to Evl a random xi0 ;
4: Send a ZKP for xi0 and x1

i0
.

5: Continue the protocol and estranct gi from the ZKPs for all i ą i0;
6: Rewind the tape of the adversary up to the same state as in line 3;
7: Send xi0 “ pg´1

i0`1...g
´1
N q ‹ y;

8: Simulate again ZKP for xi0 and x1
i0
.

9: The protocol is executed normally leading to x, y as public key.

Remarks 41 (On the utility of the ZKP). The ZKP inserted in the KeyGen
algorithm is not only necessary to prove the security using the game based style,
but also without it opens the possibilities for attacks to the Key Generation of
the scheme. In fact without it a malicious user could send a malformed element
x̂ P X instead of the correct set element that can possibly be used to extract
information on the secret shares of the honest parties. For example in the code
equivalence setting he could send a code with a codeword of weight 1 that can
be used to get the evaluation of monomial maps on it.

Also the requirement to previously commit to a secret group element is
necessary, otherwise a malicious user could chose a group element in a way
that the output of the group action has some particular characteristics (a naive
example could be that he forces the last bit of the set element to be 0).

Instead as shown by the proof is not necessary to incorporate an additional
ZKP for the committed values x1

i, as done in [CS20], since by rewinding we can
extract the secret share directly from the ZKP in state 5 of Algorithm 10.
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4.2 Construction for Non-Abelian Group Actions

In this section, we explain how to modify the construction for the full threshold
scheme, to obtain a T -out-of-N scheme. The main problem is that for a non-
abelian group action we have no hope of using linear secret sharing, but instead
we should rely on replicated secret sharing. Curiously this approach was firstly
proposed in [CS20], that takes into consideration group actions in the cyclic
setting. We start by showing the elementary way to leverage the full threshold
signature to obtain a threshold one. Then we show how this technique can be
seen as a particular case of replicated secret sharing, so that we can obtain a
distributed signature for any access structure.

Subset solution We proceed in the following way: given a pair of parameters
pT,Nq, set M “

`

N
T´1

˘

and consider the family I containing all the M subsets
of t1, ..., Nu of cardinality N ´ T ` 1. After labeling I as tI1, ..., IMu, we split
the secret key g P G as a product gIM ¨ ¨ ¨ gI1 , where gi P G. Then each user Pi
gets the knowledge of all the shares gI such that I Q i.

Proposition 4.8. Any subset J Ă t1, ..., Nu of T users can get the secret key
g, whilst any adversarial group A Ă t1, ..., Nu of T ´ 1 users cannot retrieve at
least one share.

Proof. For the first part we prove that it is possible to recover gI for any I of
cardinality N ´T ` 1. By the inclusion-exclusion principle, |J X I| “ |J | ` |I| ´

|I Y J | ě T `N ´T ` 1´N “ 1, so the intersection is non-empty and contains
at least an integer j. Thus, the user Pj has the knowledge of gI since j P I
and it belongs to the set J . For the second part, note that the complement set
AC “ t1, ..., NuzA, obviously, does not intersect A, and so the share gAC cannot
be retrieved by an adversarial group.

Thanks to this proposition, we obtain a multiplicative threshold secret shar-
ing scheme for g P G that can be leveraged to get a threshold signature scheme.
Observe that as long as the parties agree on a particular order for the shares
the non-commutativity of the group action is not a problem. Using this secret
sharing we are able to build a generic pT,Nq´threshold signature with the same
structure of the full threshold explained in Section 4.1.

In particular, the structure of the protocol is the same, with the only differ-
ence that some participants are required to send multiple messages, such that all
the gIM shares are used once. Since each gIi is shared among multiple parties,
the users need to agree on a common turn function τ that, on input the set of
participants J and the current round, allows to consistently choose which user
carries on the operations during the current turn. A possible example of τ is
the function given by min J X Ii, that is clearly unique, and returns a user in J
who knows gIi (since min J X Ii P Ii).

We can see in Protocol 4.2.1 an example on how to carry over the identifica-
tion protocol at the basis of the signature. This protocol is then rendered to a
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Public Data : Group G acting on X via ‹, element x P X and hash function H.
Private Key : Group element g “ gIM ¨ ¨ ¨ gI1 with gI P G.
Shares for Pi : all group elements gI such that j P I.
Public Key : y “ g ‹ x.

PROVERS VERIFIER
Set x̃ Ð x and for i “ 1, ...,M do :

resp
ÝÑPτpJ,iq get g̃i

$
Ð X and set x̃ Ð g̃i ‹ x̃

Set com “ Hpx̃q.
ch

ÐÝ ch
$

Ð t0, 1u.
Set resp Ð e.

resp
ÝÑfor i “ 1, ...,M do : If ch “ 0 accept if Hpresp ‹ xq “ com.

PτpJ,iq set resp Ð g̃i ¨ resp ¨ g´ch
Ii

. If ch “ 1 accept if Hpresp ‹ yq “ com.

Protocol 4.2.1: Threshold identification protocol for the shared knowledge of
the Private Key using the subset technique, executed by a set J of at leats T
honest users

threshold signature via one of the techniques explained in Section 4.1.1 or 4.1.2.
In Algorithm 12 you can see the final protocol augmented with a secure salt.

Replicated Secret Sharing To understand how this technique based on
subsets can be seen as a particular case of Replicated Secret sharing we firstly
start by defining a monotone access structure:

Definition 4.9. An access structure A for the parties P :“ tP1, .., PNu is the
family of subsets S Ă P that are authorized (to sign a message). An access
structure is said monotone if given any S P A and S1 Ą S then S1 P A.

For each access structure we can associate a family of unqualified sets U
satisfying that, for all S P A, U P U , then S X U “ H. For all the section we
define the unqualified sets in the canonical way as U “ 2PzA.

If we want to share a secret s in a group G for a monotone access structure A
we need to consider the family U` of the maximal unqualified set with respect
to inclusion and define I as the family of complements for U`, i.e.

I :“ tI P A | @U P U . U Ě PzI ùñ U “ PzIu .

Then for each Ii P I we define a share sI so that:

s “
ź

IPI
sI ;

then each party Pi is given access to sI if and only if I Q i.
Observe now that we have for any monotone access structure:

Proposition 4.10. Any authorized subset J P A of users can get the secret s,
whilst any non authorized set A P U of users cannot retrieve at least one share.
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Algorithm 12 TDS.SignT,N

Require: x P X, a security parameter λ, a hash function H, a public key
px, y “ g ‹ xq, a secure commitment scheme COM, a set J of T parties and
the turn function τ . Observe that the party Pi knows all the (multiplicative)
shares gIj of g “ gIM ¨ ¨ ¨ gI1 so that Ij Q i.

Ensure: A valid signature for the message m under the public key px, yq.
1: for t P J do
2: Pt pick saltt randomly and sends COMpsalttq

3: Set xj0 “ x for all j “ 1 to λ Ź Shared commitment generation phase
4: for i “ 1 to M do
5: If i ą 1 PτpJ,iq receives xji´1 from PτpJ,i´1q for all j “ 1 to λ
6: for j “ 1 to λ do
7: PτpJ,iq chooses g̃ji P G and computes xji “ g̃ji ‹ xji´1

8: Pi outputs x
j
i

9: Set xj “ xjN for all j “ 1 to λ. Party τpJ,Nq broadcast all xj to all players.
10: Each party publish saltt and checks the consistency of the received data with

the initial commitment.
11: salt “

ř

t saltt
12: Compute ch “ Hpx1}...}xλ}salt}mq Ź Non-interactive challenges evaluation
13: Set uj0 “ e for all j “ 1 to λ Ź Shared response generation phase
14: for i “ 1 to M do
15: If i ą 1 PτpJ,iq receives uji´1 from PτpJ,i´1q for all j “ 1, ..., λ
16: for j “ 1 to λ do

17: PτpJ,iq computes uji “ g̃ji u
j
i´1g

´chj
i

18: PτpJ,iq outputs uji
19: All users verify uji is valid;

20: respj “ ujN for all j “ 1 to λ
21: sig “ ch}salt}resp1}...}respλ
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Proof. We prove that they can recover the share by proving that any share sI
for I P I is known by at least one user in J . In fact suppose that there exists
I P I so that no user in J has access to it, this mean that I S Pi for all Pi P J ,
so we have I X J “ H. This implies that S Ď Ic. Since A is monotone then we
have Ic P A, but Ic lie also in U` because of I definition, so Ic P A X U , that
is absurd for Definition 4.9.

Also for any A P U we know that there exists a maximal element B P U`

such that B Ě A, this implies Bc Ď Ac and Bc X A “ H. Also we have that
Bc P I by definition, but no Pi P A can have access to sBc since otherwise there
would be an intersection.

By using this proposition the parties in the authorized set J can recover the
secret just by agreeing on which of them should be the one sharing each share,
i.e. by agreeing on a function ψJ : I Ñ P such that ψJpIq P I (i.e. ψJpIq

knows I).
When we are working in abelian group (we use additive notation for sim-

plicity) this implies that for any authorized set J the secret s can be seen as a
sum of |J | shares:

s “
ÿ

PiPJ

»

–

ÿ

ψJ pIq“Pi

sI

fi

fl . (4.5)

This is used in [CS20] to reduce the number of rounds in their threshold signature
scheme, but it cannot be used for non-abelian groups.

It should be clear at this point how the subset solution is just a particular
instance of replicated secret sharing in which the authorized sets are the one
of cardinality at least T , in fact in this way U` are the subsets of cardinality
T ´ 1 and I the ones of cardinality N ´ T ` 1. Then the turn function τ can
be derived as τpJ, iq :“ ψJpIiq.

Usability of Replicated Secret Sharing The main drawback of Replicated
Secret sharing is that the number of shares goes as the cardinality of U`, that
usually is exponential in the number of parties. For example in the threshold
case there are in total

`

N
T´1

˘

shares, also each party has the knowledge of
`

N
T

˘

shares (this can be proved with elementary combinatorics techniques).
Also if the group is non-abelian the number of rounds cannot be compressed

and is equal to the total number of shares, thus exponential. In the threshold
case it is equal to

`

N
T

˘

, as said before.
So the scheme is practical only in certain scenarios; for example for T “ N

(full threshold) or N small. For the case T “ N ´ 1 and N ą 3, the size of
the shares is already linear in N and the rounds are quadratic in N . As said
the main issue here is the non-commutativity of the group, which precludes the
usage of traditional techniques for secret sharing and the compression of the
share.

We would like to point out however that for the most used combinations of
pT,Nq, like p2, 3q or p3, 5q, the increase in the number of shares and rounds is
so contained that it does not impact the efficiency of the protocol.
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Distributed Key Generation The distributed key generation protocol in
Algorithm 10 can be leveraged also to the threshold case using replicated secret
sharing again, in the same way as for the signing algorithm. There is only some
considerations to be made. The central point is that during the generation each
share gi is known to several users, so to apply it on xi´1 they can:

1. jointly generate a shard of it and then combine the shard, essentially
repeating a protocol similiar to the key generation;

2. delegate one of the users that should know a share the due of executing
the turn and then he shares it to the others.

The first option is, for example, implemented efficiently with the protocol
ΠRand in Section 2.4 of [CS20]. The efficient implementation can only be imple-
mented in an abelian group since it is based on the same idea of Equation (4.5).

Instead the second option has a lower latency for the non-abelian case since
we don’t have intermediate rounds. Moreover:

´ the key generation protocol is secure according to Lemma 4.6, so the party
executing it cannot bias it;

´ every authorized party can directly check that the shares corresponds to
the one applied.

This said, the key generation is performed as before, where each party sends
messages according to the function τ . The signature algorithm is also performed
in the same way as the full threshold scheme, using the function τ to determine
which party sends which messages at each round.

Said this the proof of security for this scheme is practically equal to the full
threshold one: in fact, one can imagine that, after an initial phase to see who
has the required shares, the scheme is essentially an pM,Mq-threshold scheme.

Theorem 4.11. For a weakly pseudorandom free group action, if the centralized
signature is unforgeable in the quantum random oracle model, then the pT,Nq-
threshold signature scheme composed by TDS.KeyGenT,N , TDS.SignT,N and the
verification DS.Verify is EUF-CMA secure in the quantum random oracle model.

Sketch. The proof is very similar to that of the full threshold case (Theorem 4.5).
First of all, note that, since the adversary controls at most T ´ 1 players, there
must be at least a set Iho P I composed only by honest players on which the
adversary has no control, as showed in the proof of Proposition 4.8. Thus we just
use the strategies from Algorithm 11 and Algorithm 9 using as non corrupted
user PτpJ,hoq.

Abelian Group Actions Thanks to the reduced overhead computations it
would be interesting to use the salt solution also for abelian group actions. How-
ever observe that for the security reduction a round robin structure is necessary
also in the response for challenges ch ‰ 0, in fact in the simulation from Algo-
rithm 9 the adversary in line 21 is rewinded after the receival of uji0´1. Thus we
cannot use the observation from Remark 39.
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Instead the classical recombination strategy from Equation (4.5) can be
leveraged to cut the number of rounds from M “

`

N
T´1

˘

to T , even if each
response

ř

ψJ pIq“Pi
sI needs to be verified independently. However for verifying

the responses uji firstly they need to recompute the intermediate values via a
multiparty computation protocol equal to the one in Algorithm 10.

4.2.1 A LESS Tailored Approach

The scheme proposed in Algorithm 12 becomes rapidly impractical for large
values of T,N , since the number of round and shares necessaries is

`

N
T´1

˘

. Solv-
ing this using only non-abelian group actions as black boxes is not an option,
thus it is desirable to find some tailored solution that exploits the group action
peculiarities.

For the Hamming metric Code Equivalence monomial maps are too struc-
tured for a threshold like sharing, but maybe other approaches are possible. In
Proposition 3.13 we have shown how the change of basis matrix S P GLk con-
tains all the secret information and may eventually be used to recover efficiently
the monomial map.

Since invertible matrices are simpler object to deal with, there may be a way
to define a multiplicative threshold secret sharing for matrices, i.e. a scheme
in which for any set P “ ti1, ..., iT u of T parties each stakeholder Pij can

create a matrix Ŝij P GLkpFqq such that a secret matrix S can be recovered as

S “ Ŝi1 ¨ ¨ ¨ ŜiT .
With a scheme like that, if, during the commitment phase, each party mem-

orizes not only the ephemeral monomial map Qj , but also the linear map S̃ij ,

they can retrieve SS̃ (and so QQ̃) by recursively combining resp Ð S̃ij ¨resp¨Ŝij ,
as shown in Protocol 4.2.2.

There are surely several ways to obtain a threshold secret sharing for ma-
trix multiplication, but, as we can seen from the protocol, we need additional
properties:

1. the secret matrix S (or the shares) should not have a structure that leaks
information on the monomial map, i.e. it should still be hard to find Q
given G and SGQ;

2. during the recombination phase it should be infeasible to use the publicly
exchanged information to retrieve the share Ŝij or the ephemeral map Q̃ij .

Satisfying these properties is not easy and, at the moment, we do not know
any practical and secure way to instantiate this sharing and this protocol. As
pedagogical example we go through a way to instantiate the protocol, even if
flawed.

In the case where k is an even number is possible to have a threshold secret
sharing scheme based on matrix multiplication working in the multiplicative
abelian subgroup U Ď GLkpFqq defined as follows:
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Public Data Parameters : Parameters n, k, q, linear rn, ks-code with generator matrix G
and hash function H.

Private Key : Invertible matrix S P GLk and monomial matrix Q.
Shares for Pj : Share of S for on the set of parties, wlog, J “ r1, T s.
Public Key : G1 “ SGQ.

PROVERS VERIFIER

Set G̃ Ð G1 and for i “ 1, ..., T :

com
ÝÑget S̃i

$
Ð GLkpFqq and Q̃i

$
Ð Monon

set G̃ Ð S̃i ¨ G̃ ¨ Q̃i;

Set com “ HpSFpG̃qq;
ch

ÐÝ ch
$

ÐÝ t0, 1u.

If ch “ 0 then resp Ð Q̃

resp
ÝÑ

(retrieved opening all Q̃i) Accept if HpSFpG1 ¨ respqq “ com.
If ch “ 1 then ν Ð I;
for i “ 1, ..., T :

ν Ð S̃i ¨ ν ¨ Ŝi;

Use ν and algo. 5 to get resp Ð QQ̃ Accept if H pSF pG ¨ respqq “ com;

Protocol 4.2.2: Threshold identification protocol using only T shares.

U “

"„

I A
0 I

ȷ
ˇ

ˇ

ˇ

ˇ

A P F
k
2 ˆ k

2
q

*

. (4.6)

The group U has the interesting property that the multiplication of matrices
corresponds to the addition of the submatrices:

„

I A
0 I

ȷ

¨

„

I B
0 I

ȷ

“

„

I A ` B
0 I

ȷ

(4.7)

We can use this property to define a threshold secret sharing scheme for
matrix multiplication by simply using any Linear Secret Sharing scheme, like
Shamir’s one [ÇBCS22, Section 1.5] for a secret k

2 ˆ k
2 matrix S (it is enough to

do it component-wise), so that it can be recovered by T parties by adding the
share matrices multiplied by the Lagrange coefficients, i.e. S “ δ1S1`...`δTST .
At this point we have that:

„

I S
0 I

ȷ

“

„

I δ1S1

0 I

ȷ

¨ ¨ ¨

„

I δTST
0 I

ȷ

Using this secret sharing scheme reaches clearly the necessary goal of being
multiplicative, but has the problem that the secret matrix is in triangular form,
so clearly cannot be used alone, since it would leak the private permutation. In
fact we have:

„

G1
1

G1
2

ȷ

loomoon

G1

“

„

I S
0 I

ȷ

¨

„

G1

G2

ȷ

loomoon

G

¨ Q “

„

pG1 ` SG2q ¨ Q
G2 ¨ Q

ȷ

; (4.8)
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hence using Algorithm 5 on the pair G2,G
1
2 “ G2 ¨ Q we can recover, at least

partially, the secret.
To solve this we we can consider matrices in the product group UˆU 1, where

U 1 is the transpose of U :

U 1 “

"„

I 0
A I

ȷ

| A P F
k
2 ˆ k

2
q

*

. (4.9)

This way the secret matrices have the form:

„

I S1

0 I

ȷ

looomooon

Ŝ1

¨

„

I 0
S2 I

ȷ

looomooon

Ŝ1
2

“

„

S1S2 ` I S1

S2 I

ȷ

. (4.10)

On the assumption that a change of basis of the form (4.10) hides the mono-
mial map, we may hope to get a secure scheme (Protocol 4.2.3) by

1. sharing differently the two matrices S1,S2 using a linear secret sharing
LSS;

2. repeating the for loop two times during the commitment and the response
phases.

Sadly Protocol 4.2.3 has a flaw, that allows to use the vulnerable structure
from (4.8). In fact by looking at the first user an honest-but-curious adversary
can store G̃˚ “ S̃1,1G

1Q̃1,1 during the commitment and, on challenge ch “ 1,

during the response phase stores R “ S̃1,1 ¨ ŜLSSp1q,1. This way he compute:

R´1G̃˚ “ Ŝ´1
LSSp1q,1 ¨ S̃´1

1,1 ¨ S̃1,1G
1Q̃1,1 “ Ŝ´1

LSSp1q,1 ¨ G1Q̃1,1 “

“

„

I ´SLSSp1q,1

0 I

ȷ

¨

„

G1
1

G1
2

ȷ

loomoon

G1

¨ Q̃1,1 “

„

pG1
1 ´ SLSSp1q,1G

1
2q ¨ Q̃1,1

G1
2 ¨ Q̃1,1

ȷ

. (4.11)

From G1
2 ¨ Q̃1,1 and G1

2 via Algorithm 5 Q̃1,1, so the share SLSSp1q,1, can be
retrieved, breaking the protocol security.

Possible Future Direction Even if the double triangular matrix solution is
not secure, the question arises about the existence of other possible ways and
research direction to get a multiplicative matrix secret sharing. Note that results
in this directions would be interesting also for MEDS, thanks to the discussion in
Section 3.2.2 on Problem 28. Surely, a possible direction would be to implement
classical MPC technique, but this requires describing and computing the group
action as an explicit arithmetic circuit, that could in principle be feasible, but
surely the practicality of the scheme would be drastically reduced.

With regards to other possible q-subgroups (i.e. subgroup of order a power

of q, like U » F
k2

4
q ), as the triangular matrix subgroup U , we should note that,
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Public Data Parameters : Parameters n, k, q, linear rn, ks-code with generator matrix G
and hash function H.

Private Key : Invertible matrix Ŝ1Ŝ
1
2 P U ˆ U 1 and monomial matrix Q.

Shares for Pj : Additive shares of S1 and S2 for LSS

Public Key : G1 “ Ŝ1Ŝ
1
2GQ.

PROVERS VERIFIER

Set G̃ Ð G1 and for i “ T, ..., 1, r “ 1, 2 do :

com
ÝÑget S̃i,r

$
Ð GLk and Q̃i,r

$
Ð Monon

set G̃ Ð S̃i,rG̃Q̃i,r.

Set com Ð HpSFpG̃qq.
ch

ÐÝ ch
$

Ð t0, 1u.

If ch “ 0 then resp Ð Q̃

resp
ÝÑ

(retrieved opening all Q̃i,r) Accept if HpSFpG1 ¨ respqq “ com.
If ch “ 1 then ν Ð I.
for i “ T, ..., 1, r “ 1, 2 do :

ν Ð S̃i,r ¨ ν ¨ ŜLSSpiq,r.

Use ν and algo. 5 to get resp Ð QQ̃ Accept if H pSF pG ¨ respqq “ com.

Protocol 4.2.3: Identification protocol for the threshold version

since

#GLk “

k´1
ź

i“0

pqk ´ qiq “ q
řk´1

i“1 i
k´1
ź

i“0

pqk´i ´ 1q “ q
kpk´1q

2

k´1
ź

i“0

pqk´i ´ 1q ,

the Sylow q-groups of GLk have cardinality
kpk´1q

2 .3 Note that all Sylow q-groups
are conjugate and one of them is the group of upper triangular matrices with
the identity on the diagonal T Ă GLk. Hence they are all conjugate with the
triangular matrices, so, since Sylow q-subgroup are maximal, for any q-subgroup
V Ă GLk there exists R P GLk such that R´1 ¨ V ¨ R Ă T.

This means that, for any S P V , R´1 ¨S ¨R “ S˚ is upper triangular. Hence
from G and G1 “ SGQ we can get G˚ “ R´1G and

R´1G1 “ R´1SGQ “ S˚R´1GQ “ S˚G˚Q .

Thanks to the triangularity of S˚ leakages like (4.8) may be exploited. This
means that any secure sharing structure, should not rely exclusively on some
particular q-subgroup.

Another possible direction to solve this would be to drop the use of Shamir
Secret Sharing and instead rely on something like the Blakley’s Secret Shar-
ing scheme [Bla79], that recover the secret by intersecting T hyperplanes, for
example by applying the change of basis on some masked hyperplanes.

3Theory regarding Sylow groups and theorems can be read in [Lan12, Chapter 1.6]
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4.3 Constructions for Cyclic Group Actions

In this section we see how the previous construction can be improved for the
case in which the group G is cyclic with order q know and we have access to
a generator g; as introduced in the cutting-edge paper [DM20]. We show a
scheme that, at the moment, even if it uses also a salt, is only proven secure in
the honest-but-curious model. The scheme can be adjoined by ZKPs to obtain
an active security, as shown in [CM22; BDPV21], even if much more sophisti-
cated than Protocol 4.1.2. Instead the proof technique used for Theorem 4.5
before cannot be adapted here since we do not have a simple way to access the
intermediate elements xi used for the verification.

However, we rely here in a different proof technique based on simulatability
[GJKR96], that follows the path of [DM20], without using an ad-hoc assump-
tion.

Under our assumptions we may see the group action as an action defined on
the integers modulo q:

r¨s : Z{qZ ˆX Ñ X

pa,Eq Ñ rasx :“ ga ‹ x .
(4.12)

The only known instance of cryptographic group action (HHS) with this
characteristic is the one used in CSI-FiSh ([BKV19]). For example in CSI-FiSh:

q “ 3 ¨ 37 ¨ 1407181 ¨ 51593604295295867744293584889¨

¨ 31599414504681995853008278745587832204909 » 2257.136 . (4.13)

The idea at this point is simple: given a secret s, so that y “ rssx, we share it
through a linear secret sharing technique like Shamir Secret Sharing, in this way
for any subset J of T users they are able to find si for i P J so that s “

ř

iPJ si,
thus:

rsiT s ¨ ¨ ¨ rsi1sx “ r
ÿ

iPJ

sisx “ rssx “ y . (4.14)

This scheme requires to adapt the linear secret sharing also for the case in
which q is not prime ([DM20]).

Secret Sharing on Modular Integers The classical pT,Nq-Shamir Secret
Sharing for finite field Z{qZ with q ą N goes as following:

´ the dealer generate a secret uniformly random polynomial f P Z{qZrts of
degree T ´ 1;

´ the secret is fixed to s “ fp0q;

´ the party Pi get access to the share si “ fpiq;

´ when a set J of T parties decides to recover the secret they all share
sjδJ,jp0q, where δJ,jptq is the unique polynomial of degree k ´ 1 equal to
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1 on j and null for the other entries in J , also said Lagrange polynomial,
that is evaluated as:

δJ,jptq “
ź

iPJ,i‰j

i´ t

i´ j
mod q ; (4.15)

´ by summing the published values they obtain:
ÿ

jPJ

sjδJ,jp0q
˚
“ fp0q “ s . (4.16)

For ˚ observe that f is the unique polynomial of degree T ´ 1 passing
through all the T points pj, sjq.

As said, the order of the group may not be prime. It is possible to overcome
this difficulty maintaining the security of the sharing employing some classical
techniques, used for example in [Sho00], as explained in [DM20].

The only critical point is the step 4.3, where to evaluate the Lagrange poly-
nomial in (4.15) we need to invert the term

ś

iPJ,i‰j i´ j. By classical results
from modular arithmetic, we can do that if and only if i´ j is not coprime to q
for all i P J different from j. Suppose now that q1 is the smallest prime factor
for q, if N ă q1 we have that

|i´ j| ď max i, j ď N ă q1 ;

since also i´ j ‰ 0 we have that i´ j and q are coprimes. Under this additional
assumption the scheme remains secure:

Proposition 4.12 (Proposition 1 in [DM20]). The classical pT,Nq-Shamir Se-
cret Sharing for a ring Z{qZ with p ą N for all positive primes dividing q is
perfectly secure, where by perfectly secure we mean that the random variable
associated to the secret is independent to any set of T ´ 1 random variables
associated to the shares.

Perfect secrecy is the best level of security since it is equivalent to ask that
any unbounded adversary cannot retrieve the secret from T ´ 1 shares with
probability greater than q´1.

Remark 42. One Time Pad, the classical example of cryptosystem achieving
perfect secrecy, can be seen as a particular case of a p2, 2q-Shamir Secret sharing
on the ring of integers modulo 2n.

To remove the small factor q0 in the order of a group we simply have to
consider the subgroup generated by gq0 , this way we get a group of order q

q0
.

Clearly we must check that the subgroup satisfies the level of security required.
For example for CSI-FiSh to have a SSS with up to 1407180 users we can consider
the group generated by l3¨37, that has order

q1 “ 1407181 ¨ 51593604295295867744293584889¨

¨ 31599414504681995853008278745587832204909 » 2250.342 . (4.17)
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Algorithm 13 TDS.Sign

Require: x P X, a security parameter λ, a hash function H, a public key
px, y “ rssxq, a secure commitment scheme COM, a set J of T parties.
Observe that there exists fptq so that s “ fp0q and the party Pi knows fpiq.

Ensure: A valid signature for the message m under the public key px, yq.
1: for i P J do
2: Pi pick salti randomly and sends COMpsaltiq

3: Set xj0 “ x for all j “ 1 to λ Ź Shared commitment generation phase
4: for i P J do
5: for j “ 1 to λ do
6: Pi chooses b

j
i P G and computes xji “ rbji sx

j
i´1

7: Pi outputs x
j
i

8: Set xj “ xjT for all j “ 1 to λ.
9: Each party publishes salti and checks the consistency of the received data

with the initial commitment.
10: salt “

ř

i salti
11: Compute ch “ Hpx1}...}xλ}salt}mq Ź Non-iterative challenges evaluation
12: for i P J do Ź Shared response generation phase
13: for j “ 1 to λ do
14: Pi outputs u

j
i “ bji ´ chj ¨ si ¨ δJ,ip0q;

15: respj “
ř

i u
j
i for j “ 1 to λ;

16: sig “ ch}salt}resp1}...}respλ
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You can see the instantiation for this scheme in Algorithm 13. Let’s point
out some differences from Algorithm 7 and 12.

´ The number of rounds is limited to the number of users T .

´ The combination phase, in state 14, can be computed at the same time,
halving the latency in the protocol.

´ The intermediate set elements x1, ..., xT´1 with

x “ x0 x1 x2 xT´1 xT “ y
s1δJ,1p0q s2δJ,2p0q sT δJ,T p0q

,

vary for any set J , so they are unknown.

Security of LSSS In [DM20] they prove simulatability (Definition 4.3) under
a new assumption:

Problem 43 (a-Power-DDHA problem). Let pG,X, ‹q be a cryptographic group
action. Given x P X, 1 ă a ă |G| and g be a uniformly random element in
G distinguish between tuples of the form pa, x, g ‹ x, ga ‹ xq and pa, x, g ‹ x, yq,
where y is sampled from the uniform distribution.

We can now repeat their proof, without this assumption, using instead
Proposition 4.12 to simulate the intermediate elements.

Theorem 4.13. For a ring Z{qZ with p ą N for all positive primes dividing
q, the signature scheme of Algorithm 13 is simulatable.

Since the centralized scheme is unforgeable in the random oracle model, then
we get the following corollary:

Corollary 4.14. The signature scheme in Algorithm 13, with the classical cen-
tralized verification scheme, is unforgeable for honest-but-curious users under
the assumption of the hardness of GAIP (Problem 7), in the random oracle
model.

Proof of Theorem 4.13. We proceed as in the proof of [DM20, Theorem 1]. Let
A be a set of indices of corrupted shares si, with cardinality strictly smaller than
T . Given a valid signature pch}salt}resp1}...}respλq for a message chosen by the
adversary and a set of user J we want to simulate the view for the users in A
using the corrupted shares. Wlog we can assume J “ r1, T s and not specify A
instead.

The salts salt1, ..., saltT´1 can be simulated straightforwardly at random,

then the last one is obtained by fixing saltT “ salt ´
řT´1
i“1 salti.

For the responses (line 14) for j “ 1, ..., λ we generate uniformly random

integers uji P Z{qZ for i “ 1, ..., T ´ 1 and fix ujT “ respj ´
řT´1
i“1 uji . Since the

responses are uniformly sampled also the view uji are uniformly random for any
user. Hence they are indistinguishable.
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The commitments xji (line 7) instead need a different take for the two possible

challenges. For j with chj “ 0, since uji “ bji , we can simply set, as in line 6,

xji “

«

i
ÿ

k“1

bjk

ff

x “

«

i
ÿ

k“1

ujk

ff

x .

For j with chj “ 1 we need instead to build a chain replacing:

x “ x0 x1 x2 xT´1 xT “ y
s1δJ,1p0q s2δJ,2p0q sT δJ,T p0q

.

The corrupted shares can be used to define a direct chain from x applying
recursively siδJ,1p0q and a backwards one from y applying instead ´δJ,1p0q. If
there is only one non corrupted user Pi0 we can define all the intermediate
elements up to xi0´1 with a direct chain, while the other using a backwards
one. Then we know that xi0 “ rs´

ř

i‰i0
siδJ,ip0qsxi0´1 “ rsi0δJ,i0p0qsxi0´1, as

in an honest execution, since s “
ř

i siδJ,ip0q. An example for T “ 4 and i0 “ 3
is showed:

x x1 x2 x3 y
s1δJ,1p0q s2δJ,2p0q

´s4δJ,4p0q
.

The main problem is that, when there are less than T ´ 1 corrupted shares the
chains are not enough to define all the intermediate elements. We can solve
this by sampling the missing shares uniformly for all users, but one, say i0 the
relative index. This way (under the assumption that p ą N for all positive
primes dividing q) using Proposition 4.12 there exists a uniformly distributed

polynomial f̂ P Z{qZrts with f̂p0q “ s and f̂piq “ si for i “ 1, ..., T and i ‰ i0.

This way we get again xi0 “ rf̂pi0qδJ,i0p0qsxi0´1. Since the original polynomial

f and f̂ are both sampled uniformly they are indistinguishable. We can see here
an example for T “ 6, A “ t1, 3, 6u and i0 “ 6:

x x1 x2 x3 x4 x5 y
s1δJ,1p0q s˚

2 δJ,2p0q s3δJ,3p0q

´s˚
4 δJ,4p0q ´s6δJ,6p0q

;

where sampled shares are labeled s˚
i . We can also see directly that the inter-

mediate link r P Z{qZ with xi0 “ rrδJ,i0p0qsxi0´1 can be found also solving for
r:

ÿ

iPA,i‰i0

s˚
i δJ,ip0q `

ÿ

iPJzA

siδJ,ip0q ` rδJ,i0p0q “ s ;

that has always a solution since δJ,i0p0q is invertible for the requirement on q
prime divisors. Note that we only need the existance of r, not its knowledge.
Using these intermediate elements we can finally simulate the commitments as:

xji “ ruji ` ¨ ¨ ¨uj1sxi for i P r1, T s, j P r1, λs .

These are the same as in Algorithm 13 since bji “ uji ` f̂piqδJ,ip0q.
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4.4 Concrete Instantiations

In this section, we present concrete instantiations of our protocols, using the
code equivalence group actions behind the LESS and MEDS signature schemes
[BBPS21; Cho+22]; note that, however, our protocol is very general, and it is in
principle possible to utilize other groups and group actions instead. We begin
by showing that several optimizations embedded in the schemes’ design can be
adapted in order to be applied to our work too. We discuss these again using
the generic group action notation, since they can work in general.

4.4.1 Multi-bit Challenges

It is straightforward to use the multibit optimization from Section 2.3.5 for the
threshold schemes, as already done for [CS20]. As consequence, we consider
r public keys y1, ..., yr generated from the initial element x by r shared keys
gp1q, ..., gprq. To do this, we repeat the TDS.KeyGen algorithm r times in order
to generate r shared secret keys gp1q, ..., gprq and public keys y1, ..., yr. To ease
the reading we also fix y0 :“ x.

At this point we can modify Protocol 4.2.1 to produce challenges in a larger
space, as shown in Protocol 4.4.1.

Public Data : Group G acting on X via ‹, element x0 P X and hash function H.

Private Key : Group elements gpjq “ g
pjq

IM
¨ ¨ ¨ g

pjq

I1
with pjqgI P G, for all j “ 1, ..., r.

Shares for Pi : all group elements g
pjq

I such that j P I, for all j “ 1, ..., r.

Public Key : yj “ gpjq ‹ x, for all j “ 1, ..., r.

PROVERS VERIFIER
Set x̃ Ð x and for i “ 1, ...,M do :

resp
ÝÑPτpJ,iq get g̃i

$
Ð X, set x̃ Ð g̃i ‹ x̃

Set com Ð Hpx̃q.
ch

ÐÝ ch
$

Ð t0, 1, ..., ru.
Set resp Ð e.

resp
ÝÑfor i “ 1, ...,M do :

PτpJ,iq set resp Ð g̃i ¨ resp ¨

´

g
pchq

Ii

¯´1

. Accept if Hpresp ‹ ychq “ resp.

Protocol 4.4.1: Threshold identification protocol with soundness error 1
r`1 .

With this protocol the soundness error is reduced to 1
r`1 , thus in the signing

algorithm we only need to execute r λ
log2pr`1q

s rounds, reducing both the signa-

ture size and the computational cost, but increasing the public key size. It is
straightforward to obtain a security reduction to from the multibit version of
the threshold scheme to the centralized version of it, in the same way as for the
proof of Theorem 4.5 and Lemma 4.6.
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Version #rounds |pk| |sig|

Classic λ lX λlG ` 3λ

Multibit
P

λ
l

T

pr ´ 1qlX

Q

λ
log2prq

U

plG ` lq ` 2λ

Fixed t s.t.
`

t
ω

˘

ě 2λ lX pNseedsM ` 2qλ` ωlG ` t

Both t s.t.
`

t
ω

˘

pr ´ 1qω ě 2λ pr ´ 1qlX pNseedsM ` 2qλ` ωlG ` t

Table 4.1: Overview of the sizes for different variants.

4.4.2 Fixed-Weight Challenges

Another possible variant for group action-based signature schemes is the use of
fixed-weight challenge strings, as shown in Section 2.3.2.

When one tries to apply this optimization to the threshold case, a new
obstacle arises. In fact, the parties are not able to share a single seed used for
the generation of the ephemeral map g̃, but have to share M “

`

N
T´1

˘

of them.
Thus, if the challenge bit is 0, the parties need to send all the M bits, and the
total communication cost becomes Mλ. This can be a problem in two ways:

´ For this strategy to make sense, we needMλ to be smaller than the weight
of the group element.

´ In some applications, it can be desirable to not disclose the parameters T
and N .

In these cases, the fixed-weight optimization should not be used, and the signers
should just send the group element instead.

Also it is clear that here the seeds can be further compressed by using a seed
tree structure described in Section 2.3.3. As said before the combination with
a fresh salt is necessary to avoid the attack from [Cha22], since already salti is
necessary to achieve the security of the threshold construction the parties could
use it also for the PRNG call.

4.4.3 Scheme Parameters

In Table 4.1, we compare the public key size and signature size of the different
variants, both alone and combined, with respect also to T and N (setting M “
`

N
T´1

˘

). We use lX to denote the weight in bits of an element of the set X, and
lG to denote that of a group element of G.

In our signing algorithm, for each of the
`

N
T´1

˘

iteration of the for loop over
1, ...,M , each user needs to send the following quantities to the next user:

´ #rounds ¨ lX bits for the commitment phase,

´ #rounds ¨ lG ` 2λ bits in general and pNseedsM ` 2qλ ` ωlG when using
fixed-weight challenges.
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At this point, we can see specific choices for LESS and MEDS. We select the
public parameters that satisfy the requirement of 128 bits of classical security
and at least 64 bits of quantum security, and evaluate lX and lG accordingly. We
include here the data for the original signature schemes, as well as parameters
that we found in order to optimize the sum |pk| ` |sig| for the cases p2, 3q, p3, 5q

and the case without fixed-weight challenges to hide T and N (that must be
used also if Mλ ě lG).

Instantiations with LESS.

From [Bal+23b] we have taken the secure balanced LESS parameters for the
NIST Security Level I: n “ 252, k “ 126 (length and dimension of the code), q “

127 (the field size). We obtain that the size of a single code in systematic form is
given by pn´kqkrlog2pqqs bits, so lX “ 13.7kB. Instead to send a monomial map
we can use the IS-LEP optimization [PS23]. This new optimization requires the
use of a new canonical representation of the generator matrices via information
sets, this way the equality can then be verified using only the monomial map
truncated on the preimage of the information set, halving the communication
cost to kprlog2pq´1qs`rlog2pnqsq bits for each group element. This optimization
(and any other possible new optimization based leveraging modified canonical
forms [CPS23]) can be used also for the threshold protocol since:

´ for the commitment phase the last user can simply commit using the
modified canonical form, they then store the additional info received (the
information set used);

´ for the response phase when the monomial map Q´1Q̃ is recovered can
then be truncated again by the last user using the additional information
from the commitment.

For the cases in which fixed weight cannot be used we simply send all the
truncated monomial maps. In this case we can cut the signature size without
enlarging too much the public key by decreasing the code dimension to k “ 50.
Clearly this require to increase the code length up to n “ 440 for q “ 127
leading to a public key size of 17.1kB and truncated monomial map size of
100B. Numbers are reported in Table 4.2, where we report, in the last column,
also the total amount of exchanged data.

Instantiations with MEDS.

From [Cho+23] we have taken the secure parameters for the matrix code equiv-
alence problem: n “ m “ k “ 14 (matrix sizes and dimension of the code),
q “ 4093 (the field size). Thus we obtain that the size of a single code in sys-
tematic form is given by pnm´ kqkrlog2pqqs bits, so lX “ 3.84kB. Observe that
in the distributed key generation case we cannot use the public key compression
mechanism from [Cho+22, Section 5]. A group element is instead composed
by two invertible matrices, so it has size pn2 ` m2qrlog2pqqs bits and we have
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Case Variant t ω |pk| (KiB) |sig| (KiB) Exc. (MiB)

centralized Fixed 247 30 13.7 8.4 -

(2,3) Fixed 333 26 13.7 10.59 13.30

(3,5) Fixed 333 26 13.7 21.09 44.43

(N,T) r440, 50s127 - - 16.68 12.55
`

N
T´1

˘

2.19

Table 4.2: Parameters for the threshold version of LESS

Case Variant t ω r |pk| (KiB) |sig| (KiB) Exc. (MiB)

MEDS-13220 F+M 192 20 5 13.2 13.0 -

(2,3) F+M 291 19 4 11.26 14.49 3.24

(3,5) F+M 113 22 6 18.76 20.80 4.34

(*,*) M - - 8 26.24 24.74
`

N
T´1

˘

0.182

[Cho+23, Section 8] M - - 3 7.50 3.37
`

N
T´1

˘

0.342

Table 4.3: Parameters for the threshold version of MEDS

lG “ 588B. Numbers are reported in Table 4.3; as above, in the last column we
report the total amount of exchanged data.

The group element compression technique from [Cho+23, Section 8] (see
it in Section 3.4.2) cannot be used in the same way since the change of basis
matrix T cannot be shared, however here we propose a slightly less efficient
version suitable for the multiparty calculations in which the last user modify its
executions.

´ Commitment: the last user generate via a public seed a full rank matrix
R P F2ˆmn

q , i.e. random independent codewords; and take two random
codewords in the code received by the previous user. Solve Equation (3.47)
to get ÃM , B̃M and evaluate the final code as usual.

´ Response: At the end of the classical response phase the last user has
access (for each round) to Ã, B̃ such that SFpGchpÃJ b B̃qq “ G̃, thus
from R he can find the two associated codewords that can be used to
recover the group element as RpÃJ b B̃q´1. Since this codewords are in
the code Cch they can be represented as linear combinations of the Gch

rows, i.e. as a 2 ˆ k matrix M such that

RpÃJ b B̃q´1 “ MGch .

From M the verifier can recover the group element as explained in Proto-
col 3.4.4 thus the communication price per round is cut down to 2krlog2pqqs

bits.

Remark 44. Differently from the original optimization we do not know the
change of basis matrix used in the public key, implying that:
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´ there are additional linear systems to be solved since we need to invert
pÃJ b B̃q and find M;

´ in the case ch “ 0 we cannot save space by sending only the seed used to
sample the codewords. To be precise we could send it together with the
seeds used for the previous ephemeral elements, but in most cases it would
not save space since seeds and 2 ˆ k matrices have comparable sizes.
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[GHHM21] A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. “Tight
adaptive reprogramming in the QROM”. In: Advances in
Cryptology–ASIACRYPT 2021: 27th International Conference
on the Theory and Application of Cryptology and Information
Security, Singapore, December 6–10, 2021, Proceedings , Part I
27. Springer. 2021, pp. 637–667.

[GHS02] S. D. Galbraith, F. Hess, and N. P. Smart. “Extending
the GHS Weil descent attack”. In: Advances in Cryptol-
ogy—EUROCRYPT 2002: International Conference on the
Theory and Applications of Cryptographic Techniques Amster-
dam, The Netherlands, April 28–May 2, 2002 Proceedings 21.
Springer. 2002, pp. 29–44.

[GJKR96] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Robust
threshold DSS signatures”. In: International Conference on the
Theory and Applications of Cryptographic Techniques. Springer.
1996, pp. 354–371.

[GMR19] S. Goldwasser, S. Micali, and C. Rackoff. “The knowledge com-
plexity of interactive proof-systems”. In: Providing sound foun-
dations for cryptography: On the work of shafi goldwasser and
silvio micali. 2019, pp. 203–225.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. “A digital signa-
ture scheme secure against adaptive chosen-message attacks”.
In: SIAM Journal on computing 17.2 (1988), pp. 281–308.

[GPS22] S. Gueron, E. Persichetti, and P. Santini. “Designing a practical
code-based signature scheme from zero-knowledge proofs with
trusted setup”. In: Cryptography 6.1 (2022), p. 5.

[GQ19] J. A. Grochow and Y. Qiao. “Isomorphism problems for ten-
sors, groups, and cubic forms: completeness and reductions”. In:
arXiv preprint arXiv:1907.00309 (2019).

[GQ21] J. A. Grochow and Y. Qiao. “On the Complexity of Iso-
morphism Problems for Tensors, Groups, and Polynomials I:
Tensor Isomorphism-Completeness”. In: 12th Innovations in
Theoretical Computer Science Conference (ITCS 2021). Ed.
by J. R. Lee. Vol. 185. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2021, 31:1–31:19. isbn: 978-
3-95977-177-1. doi: 10 . 4230 / LIPIcs . ITCS . 2021 . 31. url:
https://drops.dagstuhl.de/opus/volltexte/2021/13570.

[Gro96] L. K. Grover. “A Fast Quantum Mechanical Algorithm for
Database Search”. In: Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing. STOC ’96. New
York, NY, USA: Association for Computing Machinery, 1996,
pp. 212–219. isbn: 0897917855. doi: 10.1145/237814.237866.
url: https://doi.org/10.1145/237814.237866.

Academic Year 2022-23 123

https://doi.org/10.4230/LIPIcs.ITCS.2021.31
https://drops.dagstuhl.de/opus/volltexte/2021/13570
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866


Section 4.4 BIBLIOGRAPHY

[GRS15] P. Gaborit, O. Ruatta, and J. Schrek. “On the complexity of
the rank syndrome decoding problem”. In: IEEE Transactions
on Information Theory 62.2 (2015), pp. 1006–1019.

[GS86] S. Goldwasser and M. Sipser. “Private coins versus public coins
in interactive proof systems”. In: Proceedings of the eighteenth
annual ACM symposium on Theory of computing. 1986, pp. 59–
68.

[ISN89] M. Ito, A. Saito, and T. Nishizeki. “Secret sharing scheme real-
izing general access structure”. In: Electronics and Communica-
tions in Japan (Part III: Fundamental Electronic Science) 72.9
(1989), pp. 56–64.

[Jao+20] D. Jao et al. SIKE. 2020.

[Jou23] A. Joux. MPC in the head for isomorphisms and group actions.
Cryptology ePrint Archive, Paper 2023/664. https://eprint.
iacr.org/2023/664. 2023. url: https://eprint.iacr.org/
2023/664.

[JQSY19] Z. Ji, Y. Qiao, F. Song, and A. Yun. “General linear group action
on tensors: A candidate for post-quantum cryptography”. In:
Theory of Cryptography Conference. Springer. 2019, pp. 251–
281.

[Kis12] V. V. Kisil. “Erlangen program at large: an overview”. In: Ad-
vances in applied analysis (2012), pp. 1–94.

[KLS18] E. Kiltz, V. Lyubashevsky, and C. Schaffner. “A concrete treat-
ment of Fiat-Shamir signatures in the quantum random-oracle
model”. In: Advances in Cryptology–EUROCRYPT 2018: 37th
Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Tel Aviv, Israel, April 29-
May 3, 2018 Proceedings, Part III 37. Springer. 2018, pp. 552–
586.

[KT17] G. Kachigar and J.-P. Tillich. “Quantum information set decod-
ing algorithms”. In: International Workshop on Post-Quantum
Cryptography. Springer. 2017, pp. 69–89.

[KTT23] N. Kimura, A. Takayasu, and T. Takagi. “Memory-Efficient
Quantum Information Set Decoding Algorithm”. In: Aus-
tralasian Conference on Information Security and Privacy.
Springer. 2023, pp. 452–468.

[Kup05] G. Kuperberg. “A subexponential-time quantum algorithm for
the dihedral hidden subgroup problem”. In: SIAM Journal on
Computing 35.1 (2005), pp. 170–188.

[Lan12] S. Lang. Algebra. Vol. 211. Springer Science & Business Media,
2012.

Academic Year 2022-23 124

https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2023/664
https://eprint.iacr.org/2023/664


Section 4.4 BIBLIOGRAPHY

[Leo82] J. Leon. “Computing automorphism groups of error-correcting
codes”. In: IEEE Transactions on Information Theory 28.3
(1982), pp. 496–511. doi: 10.1109/TIT.1982.1056498.

[LN94] R. Lidl and H. Niederreiter. Introduction to finite fields and their
applications. Cambridge university press, 1994.

[Luk93] E. Luks. “Permutation groups and polynomial-time computa-
tion”. In: DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science (1993), pp. 139–175.

[Lyu09] V. Lyubashevsky. “Fiat-Shamir with aborts: Applications to lat-
tice and factoring-based signatures”. In: International Confer-
ence on the Theory and Application of Cryptology and Informa-
tion Security. Springer. 2009, pp. 598–616.

[LZ19] Q. Liu and M. Zhandry. “Revisiting post-quantum fiat-shamir”.
In: Advances in Cryptology–CRYPTO 2019: 39th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA,
August 18–22, 2019 , Proceedings, Part II 39. Springer. 2019,
pp. 326–355.

[McE78] R. J. McEliece. “A public-key cryptosystem based on algebraic”.
In: Coding Thv 4244 (1978), pp. 114–116.

[MMPPW23] L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski.
“A direct key recovery attack on SIDH”. In: Annual Interna-
tional Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer. 2023, pp. 448–471.

[Mor14] K. Morrison. “Equivalence for rank-metric and matrix codes and
automorphism groups of Gabidulin codes”. In: IEEE Transac-
tions on Information Theory 60.11 (2014), pp. 7035–7046.

[MPS23] A. Meneghetti, A. Pellegrini, and M. Sala. “On the equiva-
lence of two post-quantum cryptographic families”. In: Annali
di Matematica Pura ed Applicata (1923-) 202.2 (2023), pp. 967–
991.

[NIS17] NIST. Post-Quantum Cryptography Standardization. URL:
https : / / csrc . nist . gov / Projects / Post - Quantum -

Cryptography. 2017.

[NIS22a] NIST. Post-Quantum Cryptography, Round 4 Submissions.
URL: https://csrc.nist.gov/Projects/post- quantum-
cryptography/round-4-submissions. 2022.

[NIS22b] NIST. Post-Quantum Cryptography, Selected Algorithms 2022.
URL: https://csrc.nist.gov/Projects/post- quantum-
cryptography/selected-algorithms-2022. 2022.

[NIS23] NIST. Call for Additional Digital Signature Schemes for
the Post-Quantum Cryptography Standardization Process.
URL: https : / / csrc . nist . gov / projects / pqc - dig -

sig/standardization/call-for-proposals. 2023.

Academic Year 2022-23 125

https://doi.org/10.1109/TIT.1982.1056498
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
 https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions 
 https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions 
 https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022 
 https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022 
 https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals 
 https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals 


Section 4.4 BIBLIOGRAPHY

[Pet10] C. Peters. “Information-set decoding for linear codes over F q”.
In: Post-Quantum Cryptography: Third International Workshop,
PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Pro-
ceedings 3. Springer. 2010, pp. 81–94.

[Poh69] I. Pohl. Bi-directional and heuristic search in path problems.
Tech. rep. Stanford Linear Accelerator Center, Calif., 1969.

[Pra62] E. Prange. “The use of information sets in decoding cyclic
codes”. In: IRE Transactions on Information Theory 8.5
(1962), pp. 5–9.

[PS00] D. Pointcheval and J. Stern. “Security arguments for digital
signatures and blind signatures”. In: Journal of cryptology 13
(2000), pp. 361–396.

[PS23] E. Persichetti and P. Santini. “A New Formulation of the Linear
Equivalence Problem and Shorter LESS Signatures”. In: Cryp-
tology ePrint Archive (2023).

[PWBJ17] R. Pellikaan, X.-W. Wu, S. Bulygin, and R. Jurrius. Codes,
Cryptology and Curves with Computer Algebra. Cambridge Uni-
versity Press, 2017. doi: 10.1017/9780511982170.

[Rav16] A. Ravagnani. “Rank-metric codes and their duality theory”.
In: Designs, Codes and Cryptography 80.1 (2016), pp. 197–216.
doi: 10.1007/s10623-015-0077-3. url: https://doi.org/
10.1007/s10623-015-0077-3.

[Reg04a] O. Regev. “A subexponential time algorithm for the dihedral
hidden subgroup problem with polynomial space”. In: arXiv
preprint quant-ph/0406151 (2004).

[Reg04b] O. Regev. “Quantum computation and lattice problems”. In:
SIAM Journal on Computing 33.3 (2004), pp. 738–760.

[Rob23] D. Robert. “Breaking SIDH in polynomial time”. In: Annual In-
ternational Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2023, pp. 472–503.

[RST22] K. Reijnders, S. Samardjiska, and M. Trimoska. Hardness es-
timates of the Code Equivalence Problem in the Rank Metric.
Cryptology ePrint Archive, Paper 2022/276. https://eprint.
iacr.org/2022/276. 2022. url: https://eprint.iacr.org/
2022/276.

[Sae17] M. A. Saeed. “Algebraic Approach for Code Equivalence”. In:
2017.

[Sch90] C.-P. Schnorr. “Efficient identification and signatures for smart
cards”. In: Advances in Cryptology—CRYPTO’89 Proceedings
9. Springer. 1990, pp. 239–252.

[Sch91] C.-P. Schnorr. “Efficient signature generation by smart cards”.
In: Journal of cryptology 4 (1991), pp. 161–174.

Academic Year 2022-23 126

https://doi.org/10.1017/9780511982170
https://doi.org/10.1007/s10623-015-0077-3
https://doi.org/10.1007/s10623-015-0077-3
https://doi.org/10.1007/s10623-015-0077-3
https://eprint.iacr.org/2022/276
https://eprint.iacr.org/2022/276
https://eprint.iacr.org/2022/276
https://eprint.iacr.org/2022/276


Section 4.4 BIBLIOGRAPHY

[Sen97] N. Sendrier. “On the dimension of the hull”. In: SIAM Journal
on Discrete Mathematics 10.2 (1997), pp. 282–293.

[Sen99] N. Sendrier. “The Support Splitting Algorithm”. In: 1999.

[Sha79] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11
(Nov. 1979), pp. 612–613. issn: 0001-0782. doi: 10 . 1145 /

359168.359176. url: https://doi.org/10.1145/359168.
359176.

[Sha92] A. Shamir. “Ip= pspace”. In: Journal of the ACM (JACM) 39.4
(1992), pp. 869–877.

[Sho00] V. Shoup. “Practical threshold signatures”. In: Advances in
Cryptology—EUROCRYPT 2000: International Conference
on the Theory and Application of Cryptographic Techniques
Bruges, Belgium, May 14–18, 2000 Proceedings 19. Springer.
2000, pp. 207–220.

[Sho94] P. Shor. “Algorithms for quantum computation: discrete loga-
rithms and factoring”. In: Proceedings 35th Annual Symposium
on Foundations of Computer Science. 1994, pp. 124–134. doi:
10.1109/SFCS.1994.365700.

[Sil09] J. H. Silverman. The arithmetic of elliptic curves. Vol. 106.
Springer, 2009.

[SK11] D. Silva and F. R. Kschischang. “Universal secure network cod-
ing via rank-metric codes”. In: IEEE Transactions on Informa-
tion Theory 57.2 (2011), pp. 1124–1135.

[SS13] N. Sendrier and D. E. Simos. “How easy is code equivalence over
Fq?” In: International Workshop on Coding and Cryptography-
WCC 2013. 2013.

[Ste94] J. Stern. “Designing identification schemes with keys of short
size”. In: Annual International Cryptology Conference. Springer.
1994, pp. 164–173.

[Sto12] A. Stolbunov. “Cryptographic schemes based on isogenies”. In:
(2012).

[Unr12] D. Unruh. “Quantum proofs of knowledge”. In: Annual interna-
tional conference on the theory and applications of cryptographic
techniques. Springer. 2012, pp. 135–152.

[Unr16] D. Unruh. “Computationally binding quantum commitments”.
In: Advances in Cryptology–EUROCRYPT 2016: 35th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part II 35. Springer. 2016, pp. 497–527.

Academic Year 2022-23 127

https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/SFCS.1994.365700


Section 4.4 BIBLIOGRAPHY

[Unr17] D. Unruh. “Post-quantum security of Fiat-Shamir”. In: Ad-
vances in Cryptology–ASIACRYPT 2017: 23rd International
Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I 23. Springer. 2017, pp. 65–95.

[Vél71] J. Vélu. “Isogénies entre courbes elliptiques”. In: Comptes
Rendus de l’Académie des Sciences de Paris. A et B, Sci-
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