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Abstract—DNA-based data storage emerged as a new competi-
tive technique for long-term storage and modeling it properly to
study its capacity is a challenging problem for information theory.
This paper investigates the capacity of DNA-storage channel
for more general models. In the first part a capacity upper
bound is obtained for a noise model insertions, deletions, and
substitutions (IDS). The bound is found via reducing the problem
to a known instance, even if with convoluted conditions on the
channel parameters. In the second part we define a new adaptable
channel model that generalize DNA-storage channel peculiarities.
We then briefly show how known capacity bounding techniques
can be leverage for this new model.
Post-scriptum: after the write up of this work (May to June 2023)
we were made aware that a similar channel model generalization
is contained in [1] (published already in May 2023), that should
be considered the first example of non-uniform standard sampling
distribution.

I. INTRODUCTION

The key idea of DNA-based data storage is to encode infor-
mation in nucleotides molecules, that present good resistance to
deterioration and information density rates order of magnitude
greater than classical SSD [2]. With the Illumina sequencing
process the molecules are amplified using Polymerase Chain
Reaction (PCR) and read in a random order [3]. Several noise
sources are observed during this phase and their intensity
increases whit the speed of this process. To be practical this
noisy random sampling reading technique need to be combined
with the use of dedicated error-correcting codes and to measure
their quality we need to know the capacity of the channel.

The DNA-storage channel capacity is an open topics in
information theory. Today its peculiar structure is abstracted as
a noisy shuffling-sampling channel, e.g. see a complete survey
in [4]. Noise model take an important role in the adequacy
and the feasibility of this studies. In particular the shuffling-
sampling channel (no noise) is studied in [5]. The case of a
BSC noisy model without sampling is solved in [6], while a
generalization with also the sampling is showed in [7], [8].
These last results are proven for a general discrete memoryless
noise channel in [9].

The next step in this direction would be the use of a
noise model allowing not only substitution errors, but also
the insertion or deletion of nucleotides during the sequencing.
The study of channel with these kind of errors, also called
synchronization errors, dates back to the 60’ with [10]. In
recent decades they received intensive study [11]–[13], mainly

thanks also to numerical methods e.g. [14], but still it is an
open problem for several channel models.

There are also other concerns related to the noisy shuffling-
sampling channel abstraction when the results are confronted
with real observations. For example as a consequence of
uniform sampling assumption the number of cluster of a
fixed size should follow a Poisson distribution, but simulations
in [15, Figure 10] prove a non negligible statistical distance.
Also errors may happen also during synthesis phase, violating
the noise independence assumption, for example an important
constrain noted in [2] is that long homopolymers or particular
distribution of nucleotides in a molecule render it inoperable.

Contributions: We leverage the previous results on the
capacity of noisy shuffling-sampling channel to obtain a con-
verse bound for a general noise model that consider also
synchronization errors using an auxiliary channel technique.

Then, partially inspired by underlying assumptions used in
previous literature and analyisis in [16], we propose a new
channel abstract model that allows to chose the sampling
distribution and different noise channel for each cluster size.

Paper outline: In Section II we recall notions for the
DNA-storage channel and the synchronization errors. In Sec-
tion III we generalize previous upper bounds for channels with
synchronization errors, then in Section IV we introduce a new
channel model. In Section V we take some conclusions and
explore future directions.

II. PROBLEM AND CHANNEL SETTING

Notation Conventions: Random variables will be denoted
by capital letters X , specific values they may take will be
denoted by the corresponding lower case letters x, and their
alphabets will be denoted by calligraphic letters X . Random
sequences Xn and their realizations xn will be super-scripted
by their dimension n, where ∗ means that x∗ has unspecified
length, and X ∗ is the set of sequences of arbitrary length
from X . The mutual information for a DMC V with input
distribution PA will be denoted also by I(PA, V ). The Poisson
probability mass functions with parameter c is denoted by
Poic(d) =

eccd

d! . We label numerical sets as [M ] := {1, ...,M}
and the integers as N.

DNA Channel Model: To capture the peculiarities of the
DNA-storage channel a general model is used in literature,
e.g. see [4], referred as noisy shuffling-sampling channel.
For a (c, β,W )-noisy shuffling-sampling channel the input is



composed by a sequence of M strands of L nucleotides, i.e.
of values in X = {A,C, T,G}, with β = log2(M)/L. Then
N = cM random sampled sequences are passed through a
noise channel W independently.

A rate R is achievable for the (c, β,W )-noisy shuffling-
sampling channel if we can define error correcting codes
C ⊆ XML with error probability arbitrarily close to zero
and log2 |C|

ML ≥ R. The supremum of the achievable rates is
referred as the capacity of the channel. To our knowledge the
more general results for the capacity of noisy shuffle-sampling
channel consider a DMC noise and are contained in [9].

Theorem II.1 (Theorem 10 [9]). Assume that the DNA channel
DNA(c, β,W ) satisfies W (y | x) > 0 for all x ∈ X , y ∈ Y .
Then, its capacity C(DNA(c, β,W )) is upper with

max
PX∈P(X )

∑
d∈N+

Poi(c, d)[I
(
PX ,W⊕d

)
+

+Ωd (β, PX ,W )]− β (1− Poi(c, 0)) ; (1)

where Ωd (β, PX ,W ) is defined as:

Ωd (β, PX ,W ) := [β∧(2β−2·I(PX ,W⊕d)+I(PX ,W⊕2d))] .
(2)

The term Ωd is necessary to counter to the possibility that
for high-noise short-molecule regime there is not enough redun-
dancy for implement an index based coding strategy (usually
used instead to prove rate achievability), see [4, Section 4.3] and
[9, Section IV.8)]. To our knowledge all known capacity results
for noisy shuffling-sampling channel fail to consider also errors
due to insertion or deletion of nucleotides from the sample
molecules, leaving it as an open question, e.g. see [4, Section
7.2]. To close this gap in this paper we consider the following
channels as noise model:

Definition II.2. A discrete memoryless synchronization chan-
nel (DMSC) with input alphabet X and output alphabet Y is
a channel that can be expressed by the probability transition
matrix W (y∗|x), where x ∈ X and y∗ ∈ Y∗ (including the
empty string).

We say that a DMSC has has finite drift if for each n ∈ N
there exists a drift D ∈ N such that W (y∗ | x) = 0 for all y∗

of length more than D.

For DMSC there is no general single letter formula, like
for DMC, but in [10], [17], they have generalized Shannon’s
theorem as:

Theorem II.3. For any DMSC W with finite drift its capacity
exists and is given by:

C = lim
n→∞

1

n
max
PXn

I (PXn ;W ) .

To generalize results from the DMC setting to the DMSC
we use a technique proposed in [14] recalled here.

A. Auxiliary channels

Consider an additional output V obtained from an auxiliary
channel on W . By using basic results from information theory
they obtain the following bounds:

I(X;Y, V )−H(V ) ≤ I(X;Y ) ≤ I(X;Y, V ) (3)

Now, by considering the capacity of the channel with auxiliary
information C(W,V ) = limn→∞

1
n maxPXn I(PXn ;W,V ) for

the case in which V does not depend on the distribution of X ,
they get the following lower and upper bounds:

C(W,V )− lim
n→∞

1

n
H(V n) ≤ C(W ) ≤ C(W,V ) (4)

By proceeding we can use a particular auxiliary channel
V to render a DMSC to a DMC and leverage the bounds
obtained before. as As in [14] consider an integer v > 0 and
divide the input channel of length n into blocks of length
v: X = X

(v)
1 , ..., X

(v)
q . We then define the auxiliary drift

channel V as follows: Vi represents the total drift occurred
in the block X(i), i.e. the difference between the number
of output and input symbols associated to this block. Using
this additional information, it is possible to divide the output
channel Y = Y

(v)
1 , ..., Y

(v)
q in the same way, such that Y

(v)
i

depends exclusively on X
(v)
i . Thus, we have obtained a DMC

W (v) where the input alphabet is X v , and the output alphabet
is X ∗. For a finite drift DMSC we know also that |y(v)| ≤ vD.

Once taken into consideration V we get that, given an input
length of n = qv, we get the following equality:

1

n
I(X;Y, V ) =

1

n
I(X

(v)
1 , ..., X(v)

q ;Y
(v)
1 , ..., Y (v)

q ) =

=
1

v
I(X(v), Y (v)) (5)

thus we have that C(W (v)) = 1
v maxP

X(v)
I(PX(v) ,W (v)).

Since we are dealing with a DMC the term can be evaluated
with the classical Blahut-Arimoto Algorithm (BAA) [18], [19].

Moreover from (4) we have that for all v > 0 hold

|C(W )− C(W (v))| ≤ 1

n
H(V ) =

H(V1)

v
(6)

and we only need to bound the right torm to have conver-
gence of the capacities. For a finite drift channel we have
V1 ∈ {0, ..., v + dv}, so H(V1) ≤ log((1 + d)v) so that
H(V1)/v → 0 when v → ∞. When looking at a particular
channel we can improve the bound computing the entropy via
numerical methods, for example for an IDS we may use a
Markov walk on the integers.

III. UPPER BOUND BY REDUCTION TO A DMC

For this section consider a DMSC W with finite drift D, as
the IDS channel, and output lenght independent on the input
by reducing it to a DMC. Now we generalize Theorem II.1 by
reducing W to a DMC.

Theorem III.1. Assume that the DNA channel DNA(c, β,W )
satisfies W (y∗ | x) > 0 for all x, y∗ ∈ X × Y∗ up to the



drift length D. Thus, its capacity C(DNA(c, β,W ) is upper
bounded for all v ∈ N by:

1

v
sup
PXv

∞∑
d=0

Poi(c, d)[I(PXv ,W⊕d)+

+ Ωd

(
vβ, PXv ,W (v)

)
] − β

(
1− e−c

)
. (7)

Proof: We fix an integer v > 0, partition the strand length
L to sub-strands of length v each, and assume that a genie
reveals the decoder the output symbols for each sub-block
in each of the output strands via an auxiliary drift channel,
as in Section II-A. This reduces the noise channel into a
DMC sequencing channel W (v), the strand-length parameter
increases to vβ, and the number of channel uses is reduced
by a factor of v, thus the ratio between strands in output and
input and it is unchanged. Thus we have a new DNA channel
DNA(c, βv,W

(v)). If a rate R is achieved by DNA(c, β,W )
then it is also achievable in the DNA channel with auxiliary
information, thus a capacity upper bound C̄A,v for the second
channel is also a bound for the first one C(DNA(c, β,W )),
modulo dividing it by v to take into consideration that the
alphabet is X v instead of X . Thus we have that:

C(DNA(c, β,W )) ≤ 1

v
CA,v . (8)

Since now the noise channel W (v) is a DMC we can use
Theorem II.1. The hypothesis W (y|x) > 0 implies immediately
that also W (v)(y∗ | xv) > 0 for all output up to drift length
Dv, thus we can plug the parameters (c, βv,W

(v)) in Theorem
II.1, after dividing by v the obtained bound we can transport it
to the initial channel with (8). By taking the infimum we obtain
the desired inequality.

The formula is, to our knowledge, the only non trivial upper
for the capacity of the DNA channel with synchronization
errors, but it is unpractical to be evaluate. Moreover the term
Ωd(·) take in consideration essentially only degenerate cases,
avoided in a real situation, thus we interested in the case in
which we can ignore it. In what follows, we loosen the bound
to obtain an upper bound that depends on the capacity of the
channels {W⊕d}d∈N, though under a condition on a minimal
value of β.

Theorem III.2. Consider DNA channel DNA(c, β,W ) satisfy-
ing the assumptions of Theorem III.1. If it further holds for all
d > 0 that

2β ≤ lim inf
v→∞

1

v

[
max
PXv

I(PXv , (Y ∗)d)−

−max
PXv

I(PXv , (Y ∗)d | (Ȳ ∗)d)

]
; (9)

where the variables (Y ∗)d, (Ȳ ∗)d are two independent outputs
of X(v) through (W (v)⊕d. Then

C(DNA(c, β,W )) ≤
∞∑
d=0

Poi(c, d)C(W⊕d)− β
(
1− e−c

)
,

(10)

where C(W⊕d) is the channel capacity for the multistrand
channel W⊕d.

As it will be clear by the proof the requirement in (9)
is necessary to discard the term Ωd(·) in the upper bound.
Theorem III.2 thus implies that there is an interval for β in
which the upper bound conjectured in [4, Section 7.2] holds.
However, it appears to be computationally difficult to explicitly
compute this critical value. This can be compared with the
symmetric DMC setting in [9], where a simple interval can be
found since it suffices to verify this condition for d = 1.

Proof: Consider the upper bound (7) of Theorem III.1.
To handle the term Ωd now we use we use equations [9,

(C.1) to (C.4) and (C.8)]1 the inequalities (C.1) to (C.4) and the
equality (C.8) to rewrite (C.4) from Appendix C [9], obtaining
that:

I(Xv,W⊕d) + Ωd

(
vβ, PXv ,W (v)

)
≤

≤
(
I(Xv, Y d | Ȳ d) + 2vβ

)
∨ I(Xv,W⊕d) . (11)

We thus clearly have that by fixing all the parameters, but v, (9)
implies that we can ignore the Ωd(·) term for the maximization.

Now we would like to bring both the supremum and a limit
inside the sum in (7). To this we use the Weistrass M-test we
prove that the sum:

∞∑
d=0

Poi(c, d)
1

v

[
I(Xv,W⊕d) + Ωd

(
vβ, PXv ,W (v)

)]
converges uniformly with respect to v. The term inside can be
bound as:

Poi(c, d)

v

∣∣∣I(Xv,W⊕d) + Ωd

(
vβ, PXv ,W (v)

)∣∣∣ ≤
≤ Poi(c, d)

1

v
(v log(|X |) + vβ) ≤ Poi(c, d)(log(|X |) + β),

that clearly converges to a finite value when sum over d since
Poi(c, ·) is a probability distribution.

Thus by bringing the supremum inside (7) we get:

C(DNA(c, β,W )) ≤
∞∑
d=0

Poi(c, d)
1

v
sup
PXv

[
I(Xv,W⊕d)+

+Ωd

(
vβ, PXv ,W (v)

)]
. (12)

At this point we can exploit again the uniform convergence
to study the limit of the sum in (12) and obtain:

∞∑
d=0

Poi(c, d) lim
v→∞

(
1

v
max
PXv

I(PXv ,W⊕d)

)
−

β
(
1− e−c

)
(13)

By Theorem II.3 we have the following convergence to the
capacity

lim
v→∞

1

v
max
PXv

I(Xv,W⊕d) = CW⊕d (14)

1The symbol ∨ therein is a typo, and should be ∧, i.e., a minimum.



that we can substitute in (13) and (12) to obtain the required
bound.

Remark III.3. Nonetheless, if the (9) condition holds, then
the upper bound in (10) can be further upper bounded using
upper bounds on the capacity CW⊕d To evaluate these we can
use again the technique of the drift channel in combination
to the BAA, by finding C((W (v))⊕d). The transition matrix
for (W (v))⊕d can be obtained from the one of the single
strand channel via the Kronecker product on the rows. A
main drawback is that the dimensions of this matrix increase
exponentially in d, rendering it unfeasible even for not so large
values. However when the error probabilities are close to 0 the
capacity rapidly approaches the upperbound log(|X |) reducing
the effect of this computational limit. Moreover since the drift
channels are independent the bound for the convergence of the
has now the form of:

|CW⊕d − C((W (v))⊕d)| ≤ d
H(V1)

v
; (15)

again reducing the effectiveness of the bound when d is large.

IV. NEW CHANNEL MODEL

When looking into the details of the proof strategy of
Theorem II.1 in [9] you can see that another auxiliary channel
with the knowledge of the cluster sets is used. This is used
also in other converse bound, like for [5], [8]. Also part of the
proof of the direct bound in [7] used a genie-aided decoder with
this information, to then prove clustering being transparent for
capacity calculations.

Thus we propose now a new abstract channel model where
we assume that the clustering procedure is genie-aided (thus
the Clustered label). We consider this a valid assumption
since in reasonable situations (β ≪ 1) the edit distance is
big enough so that the classical greedy clustering procedure
succeed with overwhelming probability, without necessity of
additional redundancy clustering oriented. This is verified by
the actual computations and some results can be found in
Appendix A of [20]. However we point out that it is still
an open question to precisely identify the maximum β for a
general channel and input distribution so that the probability
of failing the clustering decreases exponentially in M .

Noisy Clustered Shuffling-Sampling Channel (NCSSC):
To define the NCSSC we consider a sequence of distributions
π∞ := {π(M)}M∈N+

so that the M marginal distributions
are identical (but not independent) and a sequence of noisy
channels V∞ := {Vd}d∈N+

(even DMSC). The input to the
channel is a list (xL

1 , ..., x
L
M ) of M sequences of length L over

a finite input alphabet X . The channel performs the following
operations:

1) Sampling: Let S(M) = (S
(M)
1 , S

(M)
2 , . . . , S

(M)
M ) ∼

π(M), for each m ∈ [M ] the strand xL
m is assigned to

the non negative integer S(M)
m .

2) Noise: for each m ∈ [M ] the strand xL
m is passed through

a noise channel Vdm
: XL → Y∗, with dm given by

S
(M)
m . For the strands associated to 0 the output is empty

(i.e. V0 is an erasure channel that erase the input with
probability 1).

3) Shuffling: The remaining strands are shuffled maintain-
ing the information over the assigned integer.

The classical (c, β,W ) DNA-storage channel can be ob-
tained by fixing S(M) ∼ Multinomial

(
cM ;

(
1
M , 1

M , . . . 1
M

))
and Vd as the multistrand channel W⊕d. This way S

(M)
m

corresponds to the size of cluster in the classical random
sampling model. To study its asymptotic behaviour we need
additional property on the distributions.

Definition IV.1. A sequence of sampling distributions π∞ is
proper if:

1) there exists a distribution π = {πd}d such that π∞

strongly converges to π, i.e. with
∑∞

d=0 |π(M)(d) −
π(d)| → 0 for M → ∞;

2) there exists a constant κ > 0 so that for all d > 0 and
m,m′ ∈ [M ], m ̸= m′, it holds

Pr(Sm = Sm′ = d)− (π(M)(d))2 ≤ κ
π(M)(d)

M
; (16)

3) there exists a δ ∈ (0, 1/2) so that∑
d>0

√
π
(M)
d = o(M2δ) ,

∑
d>0

4

√
π
(M)
d = o(M

1
2−δ).

(17)

In analogy to [8], [9] we define Q
(M)
d = |{m ∈ {1, ...,M} |

S
(M)
m = d}| =

∑M
m=1 1(S

(M)
m = d), i.e. the number of

clusters associated to d. Since Pr(S
(M)
m = d) = π

(M)
d then

1(S
(M)
m = d) ∼ Be(π

(M)
d ). As done for the multinomial

distribution with [8, Lemma 2] we need to control the behavior
of the sum

∑
d>0 |

Q
(M)
d

M − πd| also for general distributions.

Lemma IV.2. Consider a proper sequence of distributions π∞,
then we can define an event QM such that for M → ∞
Pr(QM ) → 1 and on it

∑∞
d=0 |

Qd

M − πd| → 0.

Proof: To improve readability we avoid using the apex
M for the random variables. We start by bounding the term
|Qd

M − π
(M)
d | for each d > 0 using the Chebyshev’s inequality:

Pr

(∣∣∣∣Qd

M
− π

(M)
d

∣∣∣∣ ≥ a
(M)
d

)
≤ V ar(Qd)

(Ma
(M)
d )2

=: p
(M)
d ; (18)

Suppose to have a
(M)
d so that

∑
d>0 a

(M)
d ,

∑
d>0 p

(M)
d → 0

for M → ∞. At this point we would define the set QM as:

QM :=

{∣∣∣∣Qd

M
− π

(M)
d

∣∣∣∣ ≤ a
(M)
d | d > 0

}
. (19)

It satisfies the convergence requirement since on it∑
d

∣∣∣∣Qd

M
− πd

∣∣∣∣ ≤ ∑
d

∣∣∣∣Qd

M
− π

(M)
d

∣∣∣∣+ ∣∣∣πd − π
(M)
d

∣∣∣ ≤
≤

∑
d

a
(M)
d +

∑
d

∣∣∣πd − π
(M)
d

∣∣∣ → 0 . (20)



Let’s now fix a
(M)
d :=

(π
(M)
d )1/4

M1/2−δ . Observe that:∑
d>0

a
(M)
d =

1

M1/2−δ

∑
d>0

(π
(M)
d )1/4

(17)
=

o(M1/2−δ)

M1/2−δ
→ 0

(21)
Since Qd is a sum of Bernoulli variables 1(S(M)

m = d), we
can bound the variance term from (18) by using π

(M)
d (1 −

π
(M)
d ) ≤ π

(M)
d for the M square terms, while for the O(M2)

covariance terms

Cov(1(Sm = d),1(Sm′ = d)) = Pr(Sm = Sm′ = d)−(π
(M)
d )2

we use (16). Thus we can bound

p
(M)
d ≤

π
(M)
d (1 + c)

M
· M1−2δ

(π
(M)
d )1/2

=
(π

(M)
d )1/2

M2δ
(1 + c) . (22)

Then we Pr(QM ) → 1, as requires, since:

Pr(Qc
M ) ≤

∑
d>0

p
(M)
d =

1

M2δ

∑
(π

(M)
d )1/2(1 + κ) ≤

≤ 1 + κ

M2δ

∑
(π

(M)
d )1/2

(17)
=

o(M2δ)

M2δ
→ 0 . (23)

For most cases, like the multinomial distribution used in the
previous literature, the previous hypothesis are verified.

Example of Use: Thanks to Lemma IV.2 the NCSSC with
proper distributions can be studied using the same techniques
of the classical DNA channel. For example, consider a sym-
metric DMC noise model {W⊕d}d∈N+

. For this channel it is
straightforward to exploit same the decoding strategy (minus
the greedy clustering algorithm) used in [7] to obtain the direct
bound of the classical DNA channel. To prove the bound also
for the NCSSC(π∞, β, {W⊕d}d∈N+

) we simply have to use
Lemma IV.2 instead of [8, Lemma 2] and ignore all terms used
to control clustering failure.

This way we get the following direct bound for
C(NCSSC(π∞, β, {W⊕d}d∈N+

):∑
d∈N+

πdC(W⊕d)− β(1− π0) . (24)

Moreover as discussed at the start of the section all previous
results in Section III are actually proved for the NCSSC
instantiated with the classsical DNA channel.

Bound like (24) could be leveraged to adapt the sampling
distribution to the observed one when it is not coherent with
the Poisson one. Moreover more general result that does not fix
the channel V∞ could be used to model errors happening during
the writing phase, not comprehended in the classica model since
they are not independent between strands originating from the
same molecule.

V. CONCLUSION AND FUTURE DIRECTIONS

Via the use of the auxiliary drift channel in some original
ways we where able to reduce the DNA-channel with syn-
chronization errors to the already solved DMC case, obtaining
a novel generalization of known bounds. The following steps

in this direction would require a, possibly tailored to a noise
model, numerical analysis to actually evaluate a validity interval
for β and the bound in (7).

Then using genie-aided clustering we defined a more general
channel model with additional freedom for the distribution and
the noise channel. We also give reasonable hypothesis to control
the asymptotic behaviour of the distributions and use them to
prove a first straightforward direct bound exploiting a known
technique in literature. As pointed out before this generality
makes the model adaptable, a valuable characteristic for a
cutting edge field like DNA-storage.

It remains open the use of the NCSSC model for more
interesting noise model, like DMSC. A possible strategy would
be to generalize the concept of typical sets (see [21, Section
7.6]) also to more general channels, as done for example in
[17, Section 4] for the proof of Theorem 1.
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