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Quantum computers and Post-Quantum
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Post-Quantum Cryptography

Problem
Shor’s algorithm on QC breaks Asymmetric Cryptography

We have the necessity to find new suitable encryption algorithms,
some possibilities are:

Lattice reduction problems (based on the difficulty of finding a
minimal norm base for a lattice given a base with big norm)
Coding Theory based algorithms
Isogeny-Based Cryptography (a new version of ECC)
other...
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The new requirements

NIST has open a call for proposal of new primitives for
Post-Quantum Cryptography in 2017:

https://csrc.nist.gov/projects/post-quantum-cryptography

LEDAcrypt is a standardization based on QC-LDPC codes used on
McEliene and Niederreiter Cryptosystem that arrived to round 2
(but failed to reach round 3) proposed by researchers from
Università politecnica delle Marche and Politecnico di Milano.
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NP-Completeness

Definition
A decision problem C is NP-complete if:

C is in NP (set of problems that can be solved in polynomial
time by a nondeterministic Turing machine)
Every problem in NP is reducible to C in polynomial time

NP-complete problem are belived to be resistant to QC attacks.

For example we have that:

The Nearest Codeword Problem (NCP) is NP-complete.
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Coding Theory
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Coding Theory in Plain English

When we send messages on a disturbed channel it is possible that
one or more errors occours, thus we would like to be able to
correct them.

For example if I sent you the message:
ATTAXK THE ENEMUES AT DAWB
you will be able to recover the original message.

This happens because the english words bring a quantity of
redundant information (in fact not every characters combination is
an english word).
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Idea

Figure: Example idea of Error correcting codes
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Definiton (Linear code)
A linear code is an injective linear map:

C(n, k) : Fk
2 → Fn

2

This map is uniquely identified by the linear subspace of the image
in Fn

2, thus we call codewords the vectors of the image.

Using this map we can add n − k bits of redundant information to
the input string.

The matrix G that represents the linear code is called Generator
matrix.

We can also associate an n − k × n matrix H called Parity-Check
matrix, that maps a n bit vector to 0 if and only if it is a
codeword.
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Example I

For example if we want to send a 2 bit message and correct at
least one error we can use this linear code:

G =
[

1 0 1 1 1
0 1 1 0 1

]
and H =


1 1 1 0 0
1 0 0 1 0
1 1 0 0 1


thus we encode the 2 bit strings as:

(0, 0) 7→ (0, 0, 0, 0, 0)
(0, 1) 7→ (1, 0, 1, 1, 1)
(1, 0) 7→ (0, 1, 1, 0, 1)
(1, 1) 7→ (1, 1, 0, 1, 0)
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Distance

Definiton (Hamming Distance)
The distance of two points is the number of different coordinates:

d(x, y) = #{i | xi 6= yi}

For example
d((0, 0, 1, 0, 1), (0, 1, 1, 0, 0)) = 2

We define the minimum distance of a linear code the minimum
Hamming distance between any two codewords.
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Example II

To have an idea of what’s happening we use graphs.

Here vertices will represents strings and the vertices will be
connected if the strings have Hamming distance 1 (we can pass
from one to another with one flip).

Figure: Representation of F2
2
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Figure: Immersion of F2
2 in F5

2
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Algorithm description

1 The first phase consist in the encoding: we add information to
a k bit string through a matrix.

2 Then the message is sent over a noisy channel.
3 The decoding algorithm is then able to invert a fixed number

of errors looking for the nearest codeword.

We can see that if d is the minimum distance, then we can correct
t errors if t ≤ 2d − 1.
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Suppose that we want to send (0, 1). We encode it as
(0, 1, 1, 0, 1), but then (0, 1, 1, 0, 0) is received.
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Coding theory and NP-Completeness

Now we can properly state the NP-complete problem associated to
linear codes:

Definiton
The decision problem Nearest Codeword Problem (NCP) is the
set of instances given by a binary k × n matrix G , a vector y ∈ Fn

2
and a positive integer d such that there exists a vector x ∈ Fk

2
such that d(xG , y) ≤ d .
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McEliece Cryptosystem
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The McEliece Cryptosystem is a triple of polynomial time
algorithms

ΠMcE =
(

KeygenMcE, EncMcE, DecMcE
)

That uses (linear) coding theory as key idea.

19/35



Keygen

Consider a (secret) linear code C(n, k) with G ∈ Mk×n as
generator matrix, an invertible scrambling matrix S ∈ Mk×k and a
permutation matrix P ∈ Mn×n.

Then we can define:

1 the secret key skMcE ← {S, G , P}
2 the public key pkMcE ← {G ′} where G ′ = S · G · P

(the · represents matrix multiplication)
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Encryption

The encryption algorithm encode a k bit string m with G ′ and
output a n bit vector x on which are performed t errors:

x = mG ′ + e ← EncMcE(pkMcE, m)

The vector e represents the t (or less) random errors.
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Decryption

The decryption algorithm uses the decoding algorithm for linear
codes (Decode) with the private key skMcE to perform an error
correcting decoding on xP−1, then it uses the inverted scrambling
matrix S−1 to recover the plain-text.

m = (mS)S−1 = Decode
(

(mS)G +
(
eP−1

))
S−1 =

= Decode
(
xP−1

)
S−1 ← DecMcE(skMcE, x)
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LEDAcrypt
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Key ideas

The McEliece cryptosystem is a well-known and trusted
construction for longer than 40 years, to improve it the LEDAcrypt
proposed a linear version with:

1 Matrices that are easy to store (ideally sparse)
2 Faster generation of G and S with the required properties
3 Faster decoding

(Fun fact: Classical McEliece cryptosystem for Goppa codes
reached the 3rd round of standardization)
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LDPC codes

LDPC codes use (sparse) circular matrices, namely matrices (in F2)
such that the shifted rows repeats them self, thus are of the form:

a0 a1 a2 . . . an

a1 a2 a3 . . . a0
...

...
... . . . ...

an a0 a1 . . . an−1


In particular the weight (number of non zero coordinates) of a
column of G (or H), denoted as dv , is much smaller than its length.
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QC codes

A QC code is defined as a linear code that can be represented as
matrix of blocks p × p such that encodes string of k0p bits in
codeword of n0p bits and that if we shift a codeword of n0 bits we
get another codeword.

In our case k0 = n0 − 1 and the parity-check matrix will be formed
by n0 circular p × p blocks:

H = [H0|H1|...|Hn0−1]
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Iterative decoding

The peculiar form of LDPC codes allows to devise an efficient
iterative decoding procedure (if the parity check matrix is known).

This decoding algorithm derived from their possible representation
as Tanner graphs ([Tan81])
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Key Generation

An important part of the algorithm is to be able to generate
genuine (pseudo)random parity-check and scrambling matrix from
a secret and secure seed.

Also it is recommended to use the seed directly as private key,
since the KeygenMcE algorithm is very fast.

Both the two matrices are composed of p × p circulant blocks
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Smart idea

We can represent a circular matrix as polynomial:

{circular matrix} ↔ F2[x ]
xp + 1

A = [aij ]pi ,j=1 ↔ a(x) =
p−1∑
i=0

a0i x i

Using this and some correlated mathematical results is possible to
put in relation the parity of the weight of the first row (the number
of ones) and the singularity of the matrix.
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Cryptanalysis of LEDAcrypt

30/35



Vulnerability I

Sadly LEDAcrypt didn’t pass the round 2 of NIST call because in
the article [Apo+20] they found a subset of weak keys such that
there are bias in the structure of the public key that leak
information on the structure of the codewords.

They also proved that it is not possible to identify the weak keys
during Keygen and the vulnerability is intrinsic to the system.
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Vulnerability II

Definiton
A key is weak if the associated matrix H · S (equivalent to G ′)
presents a strong bias in the distribution of the non zero
coefficients in the circular sub-matrices.

In particular the sub-matrices associated to ultra weak keys (for
n0 = 2) have only less than p−1

2 non zero coefficients that are all
consecutive, such that the first rows has a distribution like this:[

0 0 0 1 1 1 0
]

This matrices allows for an improved version of the ISD attack.
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