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Abstract

In this presentation we view a brief introduction to the

Containment Problem, an open problem in Algebraic Geometry

and Commutative Algebra.

Later we will see some connections with the colouration of an

hypergraph (from Combinatorics and Graph Theory), in particular

for Steiner Systems, mainly inspired by the article:

Edoardo Ballico, Giuseppe Favacchio, Elena Guardo,

Lorenzo Milazzo, and Abu Chackalamannil Thomas. Steiner

Configurations ideals: containment and colouring. 2021. arXiv:

2101.07168 [math.AC].
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https://arxiv.org/abs/2101.07168


Contents

1 Introduction

Preliminaries

Powers of an ideal

Zariski-Nagata Theorem

2 Containment

Open questions

3 Colouring and containment

4 Bibliography

3/28



Introduction

4/28



Primary decomposition

We say that an ideal I ⊆ R has a primary decomposition if there

exists a finite set of primary ideal {q1, ..., qn} such that:

I =
n⋂

i=1

qi

In a Noetherian Ring we have:

Existence

Uniqueness of the minimal primes pi = rad(qi ), in particular

they are the associated primes Ass(R/I )

Uniqueness of the primary ideals qi
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Normal powers

Given an homogeneous ideal I = 〈f1, ..., fk〉 the n-th power of I is:

I n = 〈ξ1 · · · ξn | ξi ∈ {f1, ..., fk}〉

Easy algebraic construction

Unknown primary decomposition

No clear geometric interpretation
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Symbolic powers

Given an ideal I in a Noetherian ring R the m-th symbolic power

of I is:

I (m) =
⋂

p∈Ass(R/I )

(ImRp ∩ R)

ImRp ∩ R = {r ∈ R such that exists s ∈ R \ p with sr ∈ I n}
For primes it’s the minimal p-primary ideal that contains Im

Clear primary decomposition

No easy set of generators

Wonderful geometric interpretation

7/28



Symbolic powers

Given an ideal I in a Noetherian ring R the m-th symbolic power

of I is:

I (m) =
⋂

p∈Ass(R/I )

(ImRp ∩ R)

ImRp ∩ R = {r ∈ R such that exists s ∈ R \ p with sr ∈ I n}
For primes it’s the minimal p-primary ideal that contains Im

Clear primary decomposition

No easy set of generators

Wonderful geometric interpretation

7/28



Zariski-Nagata Theorem

Theorem (Zariski-Nagata Theorem [Zar49; Nag62])

If R = k[x0, ..., xn] is a polynomial ring and p is a prime ideal then:

p(m) =
⋂

m∈m Spec(R)
p⊂m

mn

So the symbolic power represents the polynomial vanishing with

multiplicity m on the variety V(I ):

I (m) = I 〈m〉 = {f ∈ R that vanishes on V(I ) with multiplicity m}
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Containment
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The natural question that arises is:

Question

Can we find a relation between I n and I (m)?

As a consequence of the Nakayama Lemma we have one direction:

Theorem

If R is a Noetherian reduced ring then I r ⊆ I (m) if and only if

r ≥ m
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The Containment Problem

Question

Given a Noetherian Ring R and an ideal I , for which m, r positive

integers we have the containment:

I (m) ⊂ I r

11/28



Containment and big height

Let’s see a celebrated result, showed in [HH02; ELS01]:

Theorem

(Ein-Lazarsfeld-Smith, Hochster-Huneke) Let R be a regular ring

and I a non-zero, radical ideal, then if h is the big height of I we

have that for all n ≥ 0 we have:

I (hn) ⊆ I n

The height of a prime ideal p is the supremum length of a

descending chain of primes: p0 ( p1 ( ... ( ph = p

The big height is the maximum height of its associated primes
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Example

An example of a non trivial use of the previous theorem on a

reduced subscheme came directly from [ELS01, p. 2.3]:

Example

Consider a finite set of points Z in P2, since the subscheme has

dimension 0 the ideal has big height 2, so we have I (2m) ⊆ Im for

I = I (Z ). So this implies that all F with multiplicity ≥ 2m on Z

stays in I (Z )m.
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Open questions

Some important open questions for the Containment Problem are:

Question (Huneke)

Let I be a saturated ideal of a reduced finite set of points in P2,

does the containment:

I (3) ⊆ I 2

hold?

Conjecture (Harbourne, 2009)

Given a non-zero, proper, homogeneous, radical ideal

I ⊂ k[x0, ..., xn] with big height h, than for all m > 0:

I (hm−h+1) ⊆ Im
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Asymptotic conjecture

Harbourne Conjecture was proven to be false for several ideal and

arbitrary m > 0, but there are not counterexample for:

Conjecture (Stable Harbourne, 2013)

Given a non-zero, proper, homogeneous, radical ideal

I ⊂ k[x0, ..., xn] with big height h, than for all m� 0:

I (hm−h+1) ⊆ Im
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Colouring and containment
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Hypergraph

An hypergraph is a pair (V ,E ) where V is a finite set of vertices

and E contains non-empty subset of V called hyper edges

Definiton

A Steiner system (V ,B) of type S(t, n, v) is an hypergraph with

|V | = v and all the elements of B, called blocks, are n-subsets (of

V ) such that every t-tuple of elements in V is contained in only

one block of B.
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Fano plane

The most known example of Steiner is of type S(2, 3, 7) and, up to

isomorphism, is the Fano Plane (P2
F2

). It has as blocks all the lines:

B := {{1, 2, 3}, {3, 4, 5}, {3, 6, 7}, {1, 4, 7},
{2, 4, 6}, {2, 5, 7}, {1, 5, 6}}
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Colourability

Definiton

An m-colouring of the hypergraph H = (V ,E ) is a partition in m

subset of V = U1 t ... t Um such that for every edge β ∈ E we

have β 6⊆ Ui for all i = 1, ...,m. A hypergraph H is m-colourable if

there exists a proper m-colouring.

Figure: A 3-colouring for the Fano Plane
19/28



Coverability

Definiton

A hypergraph H = (V ,E ) is said c-coverable if there exists a

partition in c subset of V = U1 t ... t Uc such that every Ui is a

vertex cover, which means that for all β ∈ E we have β ∩ Ui 6= ∅.

Figure: Steiner System S(2, 3, v) for v > 3 are not 2-coverable
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Cover ideal

For an hypergraph H = (V ,E ) with V = {x1, ..., xv} consider the

polynomial ring k[V ] = k[x1, ..., xv ]:

Definiton

The cover ideal of the hypergraph H in k[V ] is:

J(H) := 〈xj1 · · · xjr | {xj1 , ..., xjr } is a vertex cover of H〉 =
⋂
β∈E

pβ

Where for every hyperedge β = {xi1 , ..., xir } ∈ E then pβ is the

prime ideal 〈xi1 , ..., xir 〉
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Coverability and containment

For a hypergraph H = (V ,B) we define τ(H) as minβ∈B{|β|}, so

we obtain:

Theorem (Theorem 4.8 of [Bal+21])

Let H = (V ,B) be a hypergraph, if H is not d-coverable then

J(H)(τ(H)) 6⊆ J(H)d

For example for Steiner Systems we have:

Proposition (Proposition 4.9 of [Bal+21])

If v > 3 and S = (V ,B) is a Steiner Triple System S(2, 3, v), then

J(S)(3) 6⊆ J(S)2
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Colourability and containment

Theorem

Consider a simple hypergraph H = (V ,B), if we indicate τ = τ(H)

and the cover ideal J = J(H), then for all q ≤ |V | if H is not

q-colourable then we have:

J(τ(q−1)) 6⊆ Jq
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The proof rely on the two results:

Theorem (Theorem 3.2 of [FHV11])

Let H = (V ,E ) be a simple hypergraph on V = {x1, ..., xv}, then

for all d > 0 we have (x1 · · · xv )d−1 ∈ J(H)d if and only if

d ≥ χ(H), where χ(H) is the minimum integer c such that H is

c-colourable

Proposition

If I is a radical ideal in a polynomial ring we have:

I (m) =
⋂

p∈Ass(R/I )

pm (1)
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Tuyl. “Colorings of hypergraphs, perfect graphs, and

associated primes of powers of monomial ideals”. In:

Journal of Algebra 331.1 (2011), pp. 224–242. issn:

0021-8693. doi: https:

//doi.org/10.1016/j.jalgebra.2010.10.025.

url: https://www.sciencedirect.com/science/

article/pii/S0021869310005442.

27/28

https://doi.org/https://doi.org/10.1016/j.jalgebra.2010.10.025
https://doi.org/https://doi.org/10.1016/j.jalgebra.2010.10.025
https://www.sciencedirect.com/science/article/pii/S0021869310005442
https://www.sciencedirect.com/science/article/pii/S0021869310005442


Bibliography III

Melvin Hochster and Craig Huneke. “Comparison of

symbolic and ordinary powers of ideals”. In: Inventiones

mathematicae 147.2 (2002), pp. 349–369. doi:

10.1007/s002220100176. url:

https://doi.org/10.1007/s002220100176.

Masayoshi Nagata. Local rings. English. Vol. 13.

Interscience Publishers, New York, NY, 1962.

Oscar Zariski. “A fundamental lemma from the theory

of holomorphic functions on an algebraic variety”. In:

Annali di Matematica Pura ed Applicata 29.1 (1949),

pp. 187–198. doi: 10.1007/BF02413926. url:

https://doi.org/10.1007/BF02413926.

28/28

https://doi.org/10.1007/s002220100176
https://doi.org/10.1007/s002220100176
https://doi.org/10.1007/BF02413926
https://doi.org/10.1007/BF02413926

	Introduction
	Preliminaries
	Powers of an ideal
	Zariski-Nagata Theorem

	Containment
	Open questions

	Colouring and containment
	Bibliography

