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CONTENTS

Introduction
The Containment problem is an open sector of research that focuses on the be-
haviour of symbolic powers of ideals in relation to the normal powers and touches
several disciplines, in particular Algebraic Geometry and Commutative Algebra,
but also Combinatorics and Graph Theory.

In this essay we will introduce the problem and investigate some connections
between these subjects.

We start in chapter 1 with an introduction to the Primary decomposition
(and associated primes), a generalization of the prime decomposition for more
general ideals. This topic is necessary to understand the construction of the
symbolic powers, an interesting algebraic instrument with several applications,
for example they represent the polynomials vanishing on a variety with higher
orders.

In chapter 2 we introduce the Containment problem, with some important
results and open questions posed recently, for instance the Stable Harbourne
Conjecture and the Stable Harbourne-Huneke Conjecture.

In chapter 3 we define the Steiner Systems, a class of hypergraphs with
high regularity properties, then we associate to them some ideals and study the
containment problem for them.

In chapter 4 we build a bridge between the colouring properties of hyper-
graphs (in particular Steiner systems) and the algebraic properties of their cover
ideals; in particular we see that the non-colourability can imply the failure of
the containment problem.
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CHAPTER

ONE

PRELIMINARIES AND SYMBOLIC POWERS

1.1 Associated primes
Let R be a commutative ring with unity, and a,b two ideal, we say that the ideal

(a : b) = {x ∈ R |xb ⊆ a}

is the ideal quotient. For the case in which a is the null ideal 0 we define the
annihilator of b as:

AnnR(b) = (0 : b) = {x ∈ R |xb = 0}

We can obviously omit the index R if it is clear by the context. In general given
an R-module M and a set S ⊆ M non empty we can define its annihilator as:

AnnR(S) = {x ∈ R |xS = 0} = {x ∈ R | ∀s ∈ S xs = 0}

Definiton 1.1.1 (Associated Prime). Let M be an R-module. A prime ideal
p ⊆ R is an associated prime of M if there exists a non-zero element a ∈ M
such that p = AnnR(a).
We define AssR(M) as the set of the associated primes of M .
For an ideal I we say that a prime is associated to I if it is associated to the
R-module R/I.

Between the associated primes of an ideal we distinguish the minimal ele-
ments, that are called isolated primes, whilst the others are said embedded
primes.

We can define also the minimal primes of the ideal I, that are the minimal
ones that contains I. In Noetherian rings these concepts are redundant, in fact
with the following proposition we have that minimal and isolated primes are
equivalent.

Proposition 1.1.2. For a Noetherian ring R, the minimal primes of R are
among the associated primes of R
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Preliminaries and Symbolic Powers

Remark 1. Another name for associated ideal used by the Bourbaki group is
assassin or assassinator, a word play between associated and annihilator.

1.2 Primary decomposition
We would like to have some sort of factorization for the ideals of a ring, more
general than the unique factorization domains, in fact this is useful only for
principal ideals. With this objective primary decomposition was introduced.

Now I will recall some of the principal result on this topics, contained in
[Rei95, Section 7] and [AM16, Section 4 and Page 83]

Definiton 1.2.1. An ideal a in a ring R is said primary if R/a is different from
zero and all its zero divisors are nilpotent, otherwise we can express this as:

fg ∈ a =⇒ f ∈ a or gn ∈ a for some n > 0

It is obvious that the radical of a primary ideal is a prime ideal, in fact given
fg ∈ rad(a) we have (fg)m = fmgm ∈ a for m > 0, and so fm ∈ a ⇒ f ∈ rad(a)
or exists n > 0 such that gmn ∈ a ⇒ g ∈ rad(a).

If a is a primary ideal such that rad(a) = p we say that a is p-primary.

Remark 2. The power of a prime ideal isn’t always primary, for example if in
R = K[x, y, z]/(xy− z2) we consider the prime ideal p = (x, z) (it is prime since
R/p ≃ K[y] that is an integral domain) we have that y is a zero divisor in R/p
(since x is not zero and yx = z2 = 0, since z2 ∈ p2) but it is not nilpotent since
yk ̸∈ p2 for all k > 0

We say that an ideal a ⊆ R has a primary decomposition if there exists
a finite set of primary ideal {q1, ..., qn} such that:

a =

n⋂︂
i=1

qi

In general such structure does not exists, but for R noetherian we can prove,
using Noetherian induction and the concept of irreducible ideal, that every
proper ideal has a primary decomposition.

Definiton 1.2.2. We say that a proper ideal a is irreducible if it cannot be
written as a proper intersection of ideal, i.e. :

a = b ∩ c =⇒ (a = b or a = c)

Lemma 1.2.3. A proper ideal in a Noetherian ring R is always the intersection
of a finite number of irreducible ideals.

Proof. Let F be the set of proper ideal such that the lemma is false. Let a be a
maximal ideal of F, since it cannot be irreducible there exists b, c strictly greater
than a (so not in F) such that a = b ∩ c. This is absurd and so F is empty.
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Preliminaries and Symbolic Powers

Lemma 1.2.4. In a Noetherian ring every irreducible ideal is primary

Proof. Modulo working in the quotient ring we can assume to work with the
zero ideal. So we assume that the ideal 0 is irreducible and we consider x, y such
that xy = 0 with y ̸= 0, then x is a zero divisor. So we have that y ∈ Ann(x)1

and we consider the chain:

Ann(x) ⊆ Ann(x2) ⊆ ...

And for the ascending chain condition there exists m with Ann(xm) = Ann(xm+1).
Now consider a ∈ (xm) ∩ (y), then a = bxm and a = cy, so since y ∈ Ann(x)
we have 0 = cyx = ax = bxmx = bxm+1, so b ∈ Ann(xm+1) = Ann(xm), then
a = bxn = 0. So (xm) ∩ (y) = 0 and since 0 is irreducible and y ̸= 0 then
xm = 0.

Combining this two lemmas we have that the decomposition for Noetherian
rings. In literature we say that a commutative ring is a Lasker Ring if every
ideal has a primary decomposition, so we can state that:

Theorem 1.2.5 (Lasker-Noether). A Noetherian Ring is also a Lasker Ring

Now we need to achieve some kind of uniqueness. First of all we say that a
decomposition a =

⋂︁n
i=1 qi is minimal if:

1. rad(qi) are all distinct

2. for all i we have qi ̸⊆
⋂︁

j ̸=i qj

We can easily prove that from every decomposition we can obtain a minimal
one using the following lemma:

Lemma 1.2.6. If a and b are p-primary then a ∩ b is p-primary

In fact we can group the primary ideal to get 1. and omit the superfluous
terms to get 2.

So we have two theorem of uniqueness for the primes associated2 to a par-
ticular decomposition.

Theorem 1.2.7 (First uniqueness theorem). Let R be a Noetherian ring and
a an ideal with minimal decomposition

⋂︁n
i=1 qi, where qi is pi-primary, then:

Ass(R/a) = {p1, ..., pn}

and so the set of primes {p1, ..., pn} is uniquely determined by the ideal

This theorem show the strong relation that we have between the associated
prime ideal and the primary decomposition for Noetherian ring. Also, it is
possible to show that the factors qi depends only on the ideal and the primes
pi, in particular:

1For Ann(x) we mean the annihilator of the principal ideal (x)
2not a random word
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Preliminaries and Symbolic Powers

Theorem 1.2.8 (Second uniqueness theorem). Let R be a ring and a an ideal
with minimal decomposition

⋂︁n
i=1 qi, where qi is pi-primary, then if pi is a

minimal element of {p1, ..., pn} qi is uniquely determined by the ideals a and pi.
In particular if ϕ : R → Rpi

= S−1R is the canonical injection (where S = R\pi)
we have

qi = ϕ−1(S−1a)

1.3 Symbolic power
Lets consider an homogeneous polynomial ring k[x0, ..., xn], it is easy to see that
if we consider a variety X with it’s coordinate ring R = k[X] and a point p ∈ X
(associated to the maximal ideal mp) we have that:

mn
p = {f ∈ k[X] such that f vanishes in p with multiplicity n} (1.1)

Sadly for a general ideal to get a similar result we can not rely on the normal
power, so now we introduce a sharper object, the symbolic power, that has
nicer geometric properties and we will see that in some way can answer to our
problem.

First of all given a prime ideal p in a Noetherian Ring R we can define the
n-th symbolic power of p as:

p(n) = {r ∈ R such that exists s ∈ R \ p with sr ∈ pn} (1.2)

This definition show clearly the idea between the symbolic power, but is not
easy to work with. We can have another equivalent definition that use the
localization on the prime ideal Rp. In fact we can see it as the contraction of
pnRp over R:

p(n) = pnRp ∩R (1.3)

In general the generic and symbolic power are different concept. It is obvious
that pn ⊂ p(n) since 1 ̸∈ p. For the other direction we can construct a counter
example with the following proposition:

Proposition 1.3.1. p(n) is the smallest p-primary ideal that contain pn

Proof.
Primary : If xy ∈ p(n) with x ̸∈ p(n) we have that exists s ̸∈ p with sxy ∈ pn.
Suppose that sy ̸∈ p, so (sy)x ∈ pn and then x ∈ p(n) that is absurd, so
sy ∈ p ⇒ (sy)n ∈ pn ⇒ snyn ∈ pn. Since p is prime sn ̸∈ p and so yn ∈ p(n).
p-primary : In fact p(n) ⊂ p and so rad(p(n)) ⊂ rad(p) = p. Also if x ∈ p we
have xn ∈ pn ⊂ p(n) and so x ∈ rad(p(n)).
Minimal : If q is p-primary and contains pn, then for r ∈ p(n) there exists
s ̸∈ p ⊃ q with sr ∈ p(n) ⊂ q, and if we assume by absurd that r ̸∈ q then there
exists k > 0 with sk ∈ q ⊂ p that implies s ∈ p for the primality, that is absurd,
so r ∈ q.

Academic Year 2020-21 4



Preliminaries and Symbolic Powers

Using the same example from Remark 2 we can observe that necessary p2 ̸=
p(2) since the first one isn’t primary.
Remarks 3. • The proposition 1.3.1 establish a new equivalent definition for

the symbolic power, more in line to the use of this ideal in the Zariski-
Nagata Theorem.

• Using the properties of localization, like [AM16, Proposition 4.8] and work-
ing with the contraction we would have speed up the proof.

Now we can see the actual definition of this concept for a general ideal.

Definiton 1.3.2. Let R be a noetherian ring and I an ideal. Given an integer
m we define the m-th symbolic power of I as:

I(m) =
⋂︂

p∈Ass(R/I)

(ImRp ∩R) (1.4)

Remarks 4. Working on the localization over the associate ideals Ass(R/I) is
possible to show some simple properties for the symbolic power:

1. I(1) = I

2. I(a) ⊆ I(b) for all a > b

3. I(a)I(b) ⊆ I(a+b) for all a, b positive integers

1.4 Zariski-Nagata Theorem
So why do we study symbolic power? The Zariski-Nagata Theorem give us the
geometric interpretation that we were looking for.

Theorem 1.4.1 (Zariski-Nagata Theorem [Zar49; Nag62]). If R = k[x0, ..., xn]
is a polynomial ring and p is a prime ideal then:

p(m) =
⋂︂

m∈m Spec(R)
p⊂m

mn (1.5)

Using the equation 1.1 we can see that in this case the n-th symbolic power
of a prime ideal represents the ideal composed by all the polynomials vanishing
on the variety with a multiplicity of n, also indicated with the notation:

I⟨n⟩ = {f ∈ R that vanishes on V(I) with multiplicity n} (1.6)

Also is possible to use this theorem to prove that this property, I(n) = I⟨n⟩, also
holds for radical ideal associated to a reduced subscheme in PN , as shown for
example in [SS09, Corollary 2.9]. This is an astonishing result that emphasize a
purely geometric significance of the symbolic power, in opposition to the normal
one.

Also for radical ideal of a polynomial ring we have a nicer representation:
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Preliminaries and Symbolic Powers

Theorem 1.4.2. If I is a radical ideal in a polynomial ring we have:

I(m) =
⋂︂

p∈Ass(R/I)

pm (1.7)

1.5 Computation of Symbolic powers
The actual computation of the symbolic powers is a difficult problem, because it
requires the computation of the primary decomposition of I and its n-th power
(to get the factors InRp ∩R), but this is an NP-hard problem (See Proposition
2.4 of [HS02] and Section 3.7 of [SS17] for more informations).

However is actually possible to evaluate a set of generators for I(n) for poly-
nomial rings using different tecniques, in Macaulay2 ([GS]) there exists the
SymbolicPowers package, code available at
https://github.com/eloisagrifo/SymbolicPowers. This package uses several meth-
ods to evaluate the results, for example for squarefree monomial ideal (so radical)
it uses theorem 1.4.2.

More information on the computation of symbolic powers and this package
are obtainable on [Gri18] and [Dra+17].

Here also a small example of the package use:

i 1 : loadPackage "SymbolicPowers" ;

i 2 : R = QQ[ x , y , z ] ;

i 3 : I = ideal ( x∗y , y∗z , z∗x ) ;

i 4 : symbolicPower ( I , 3 )

3 3 2 2 2 2 2 2 3 3 3 3
o4 = monomialIdeal ( x y , x y z , x y∗z , x∗y z , x z , y z )

o4 : MonomialIdeal of R

1.6 Fat Points
Let’s consider now an object of interest, that has particular relations with the
symbolic powers.
Let k be a field and PN the N -th projective space over k, consider now the
distinct points p1, ..., pk ∈ PN and some positive integers m1, ...,mk. If we con-
sider the defining ideals I(p1), ..., I(pk) ⊂ k[PN ], representing the homogeneous
polynomials vanishing on the point (before we have also used the notation mpi

that emphasise their role as maximal ideals) we can define another ideal:

I =

k⋂︂
i=1

I(pi)
mi ⊂ k[PN ] (1.8)

Academic Year 2020-21 6
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Preliminaries and Symbolic Powers

Since is intersection of homogenous ideals I is also homogeneous we can use it
to define a 0 dimensional subscheme Z ⊂ PN , called fat point subscheme and
indicated as

Z = m1p1 + ...+mkpk

And we will denote I as I(Z). This ideal represents the homogeneous polyno-
mials that vanishes on pi with multiplicity mi for all i = 1, ..., k. The support
of the scheme is the set of points {p1, ..., pk}.
The symbolic power of I(Z) has the particular from:

I(Z)(m) =

k⋂︂
i=1

I(pi)
mim

and so clearly represents the functions vanishing on pi with multiplicity mmi

for all i = 1, ..., k.

1.7 Relation between normal and symbolic power
For an ideal I of a Noetherian ring taking the n-th power of I is a natural
algebraic construction (is the n-th product of I with itself), we can simply have
its generators if we know the one of I, in fact if I = ⟨f1, ..., fk⟩:

In = ⟨ξ1 · · · ξn | ξi ∈ {f1, ..., fk}⟩

but it has not a clear geometric interpretation, in-fact the knowledge of the
generators does not give a lot of information on the primary decomposition.
On the other hand we have symbolic power, that inherit a strong geometric
significance, for example from Zariski-Nagata theorem, but their generators are
tricky to find, so we can pose a natural question:

Question 5. What is the relation between the two powers?

An easy result that we can obtain from standard abstract algebra is:

Theorem 1.7.1. If R is a Noetherian reduced ring then Ir ⊆ I(m) if and only
if r ≥ m

Proof. Since if I = 0 it is obvious we assume it to be non zero.
The first implication is easy, in fact for all p we have that Im ⊂ ImRp ∩R since
I ⊂ p3 and 1 ̸∈ p.
Suppose now that Ir ⊆ I(m) and r < m. Consider an associated prime p, then
if we consider the localization Ip we have:

• (Ip)
r = (Ir)p it is obvious

• (Ip)
m ⊃ (I(m))p, because I(m) ⊂ ImRp ∩R = Imp ∩R and thus passing to

the localization (again for the second term) we get the containment.
3So nothing become zero

Academic Year 2020-21 7



Preliminaries and Symbolic Powers

So composing this with the containment hypothesis (localized) we get (Ip)
r =

(Ir)p ⊂ (I(m))p ⊂ (Ip)
m. Since the other inclusion is obvious we have Imp = Irp ,

considering the intermediary power we have that IpIrp = Irp , thus we can use the
Nakayama Lemma:

Lemma 1.7.2 (Nakayama). Given an ideal I of a commutative ring with unity
A and M a finitely-generated module over A with IM = M , then there exists a
x ∈ A such that x ≡ 1 mod I and xM = 0

In our case the ring is Rp, the ideal is Ip and the module is Irp . So since Rp

is a local ring with maximal ideal the localization of p, that when localized is
also the maximal Ideal, and Ip is contained in it. Since x − 1 ∈ Ip ⊆ pp, we
cannot have x ∈ pp, otherwise we would have 1 ∈ pp, therefore we have that x
is invertible (because pp is the only maximal ideal) and then Irp = 0, but since
we inherit that Rp is a reduced ring this is possible only if Ip = 0. Since this is
true for all the prime ideal (for the non associated one it is obvious since they
intersect R \ I) and this is a local property ([AM16, Proposition 3.8]) we have
I = 0, absurd.

Sadly the other direction of the containment isn’t that easy, it’s an open
question and in the last years was largely studied for several classes of ideals.

Academic Year 2020-21 8



CHAPTER

TWO

THE CONTAINMENT PROBLEM

As stated before the other direction of the containment of symbolic powers into
normal powers is an open question in Algebraic Geometry and Commutative
Algebra. The general form of the problem is:

Question 6 (Containment Problem). Given a Noetherian Ring R and an ideal
I, for which m, r positive integers we have the containment:

I(m) ⊂ Ir

For our present knowledge in Algebra Question 6 seems quite general and
does not have a unique and simple answer (contrary to the inverse, that has
theorem 1.7.1). Usually we need to specify a particular ring and a particular
ideal. Also we consider some precise pairs, like 3, 2, or a subset given by a
disequation.

Remark 7. If the containment holds for m, r it does also for all m′, r with
m′ ≥ m, since we have I(m

′) ⊂ I(m) ⊆ Ir

To better explain this let’s see a celebrated result, showed in [HH02; ELS01]:

Theorem 2.0.1. (Ein-Lazarsfeld-Smith, Hochster-Huneke) Let R be a regular
ring and I a non-zero, radical ideal, then if h is the big height of I we have that
for all n ≥ 0 we have:

I(hn) ⊆ In

To understand this theorem we need two concepts.

2.0.1 Regular ring
For a Noetherian local ring (R,m) we say that it is a regular local ring if the
minimal number of generators of the maximal ideal is equal to the dimension of

9



The Containment Problem

R. The name came from a Zariski’s result: for an algebraic variety a point p is
non singular (regular) if and only if the ring of germs in p is regular ([Zar40]).
Is possible to see this in a more modern way, in fact for Nakayama’s Lemma
(is lemma 1.7.2, but in a different form) is possible to show that R is regular
if and only if dim(m/m2) = dim(R), and from algebraic geometry m/m2 is the
cotangent space of the point corresponding to m, so the tangent space has same
dimension of the variety if and only if the localization is regular.
In general we say that a Noetherian ring is regular if the localization at every
prime ideal is a regular local ring. Also a geometrical interpretation of this
definition is that for an affine variety V its ring of regular functions OV is a
regular ring if and only if V is a non singular variety.

2.0.2 Height of an ideal
The height of a prime ideal (ht(p)) in a Noetherian Ring R is the supremum of
the lengths h of prime ideals chains descending from p:

p0 ⊊ p1 ⊊ ... ⊊ ph = p (2.1)

The concept of height is equivalent to the codimension of the ideal p, that is
the (Krull) dimension of the localization Rp (looking at the definition it is easy
to see that they are the same). Similarly we can define the coheight of p as
the dimension of the ideal p (the supremum of the length of chains ascending
from p). To be more clear we recall that the Krull-dimension of a Ring R is the
supremum of the length of chains of prime ideals:

dim(R) = sup{r | exists a prime ideals chains: pr ⊊ pr−1 ⊊ ... ⊊ p0}

And the dimension of an ideal I is the dimension of the quotient R/I. More-
over, for a R-module M we define the dimension of M as the dimension of the
annihilator AnnR(M). Observe that for an ideal these two definitions do not
coincide (an ideal is also a module), but usually the right calculations is clear
from the context.
For a general ideal I we define the height of I as the minimum height of its
prime ideals (for proposition 1.1.2 we can consider only the associated ones)
and the big height of I as the maximal height of its associated primes. Also
if all the prime assassins as same height these two quantities are equal and we
say that the ideal has pure height.

An example of a non trivial use of theorem 2.0.1 on a fat-point subscheme
came directly from [ELS01, p. 2.3]:

Example 8. Consider a fat point subscheme Z = m1p1 + ... + mkpk (o more
simply a finite set of points) in P2, since the subscheme has dimension 0 the
ideal has big height 2, so we have I(2m) ⊆ Im for I = I(Z). Using Theorem
1.4.1 this implies that all F with multiplicity ≥ 2m (greater or equal than 2mim
for all the points pi) stays in I(Z)m.

Academic Year 2020-21 10



The Containment Problem

2.1 Constants of relevance for the Containment
problem

To measure the containment property we can some constants associated to the
ideal I, one of them is the resurgence, proposed in [BH10a], an important
article that focuses in the use of some numerical invariant of the ideal to describe
the pairs for which the containment problem holds.

Definiton 2.1.1. For a proper non-zero ideal I in a commutative ring R we
define the resurgence of I as:

ρ(I) = sup
{︂m

r
| I(m) ̸⊆ Ir

}︂
Bounding the resurgence of an ideal means finding a constant such that

m
r > ρ implies that I(m) ⊆ Ir holds. For example using this quantity we can
express the Theorem 2.0.1 (in a slightly weaker version) as:

Theorem 2.1.2. For a radical non-zero ideal in a regular ring ρ(I) ≤ h where
h is the big height of I

In general this is not an optimal bound and since it is difficult to directly
evaluate ρ(I) we can pose the question when the resurgence is strictly less than
the big height.

Another constant, closely related to ρ, is the asymptotic resurgence (in-
troduced in [GHV13]), defined as:

Definiton 2.1.3. For a homogeneous non-zero proper ideal I of k[x0, ..., xn]
the asymptotic resurgence ρa(I) is:

ρa(I) = sup
{︂m

r
| I(mt) ̸⊆ Irt for all t ≫ 0

}︂
2.1.1 The Waldschmidt constant
Definiton 2.1.4. Given an homogeneous ideal I =

⨁︁
d>0 Id we can define the

Waldschmidt constant as:

α̂(I) = lim
m→∞

α(I(m))

m

where α(I) is the least degree of a generator of I, that is the smallest integer
d such that Id ̸= 0.

This constant was introduced for the first time in the 1970’ in [Wal77]. And
is of particular interest for ideal of fat points.
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The Containment Problem

2.2 Some conjectures and questions for the Con-
tainment Problem

A possible question arises from Example 8: in this case we know (using n = 1)
that I(4) ⊆ I2, but from several example we know that we can improve the
containment to I(3) ⊆ I2, so naturally arises the question:
Question 9 (Huneke). Let I be a saturated ideal of a reduced finite set of points
in P2, does the containment:

I(3) ⊆ I2

hold?
Another good question is if it is possible to improve the result from theorem

2.0.1. Since there is no known example for which the bound is optimal a new
conjecture have been posed:

Conjecture 2.2.1 (Harbourne). Given a non-zero, proper, homogeneous, rad-
ical ideal I ⊂ k[x0, ..., xn] with big height h, than for all m > 0:

I(hm−h+1) ⊆ Im

Trying to solve this problem directly has been shown to be quite difficult,
so there are several sharper version of the Conjecture 2.2.1, in particular the
following one does not request the containment to hold in general, but only
asymptotically:

Conjecture 2.2.2 (Stable Harbourne). Given a non-zero, proper, homoge-
neous, radical ideal I ⊂ k[x0, ..., xn] with big height h, than for all m ≫ 0:

I(hm−h+1) ⊆ Im

Another way to modify the Harbourne Conjecture is to use the irrelevant
ideal M = ⟨x0, ..., xn⟩ (also said graded maximal ideal) :

Conjecture 2.2.3 (Stable Harbourne-Huneke). Given a non-zero, proper, ho-
mogeneous, radical ideal I ⊂ k[x0, ..., xn] with big height h, than for all m ≫ 0:

• I(hm) ⊂ Mm(h−1)Im

• I(hm−h+1) ⊂ M(m−1)(h−1)Im

One simple example of why do we use the graded maximal ideal is:

Proposition 2.2.4. Given a r > 0 and a non-zero, proper, homogeneous ideal
I ⊂ k[x0, ..., xn], with k of characteristic 0 we have:

I(r+1) ⊆ MI(r)

Proof. This is a straight application of Euler identity for homogeneous polyno-
mial:

(degF )F =

n∑︂
i=0

xi
∂F

∂xi

in fact if F ∈ I(r+1) we have ∂F
∂xi

∈ I(r) for Zariski-Nagata theorem (1.4.1) and
the thesis follows.
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The Containment Problem

2.3 Some results on the Containment problem
We recall some results on the Containment problem that we will use. First of
all a generalization of theorem 2.0.1:

Theorem 2.3.1 (Theorem 4.4 of [Joh14]). Let R be a regular ring containing
a field and let I be an ideal with big height h, for all integers n ≥ 1, s ≥ 0 and
0 ≤ s1 ≤ ... ≤ sn integers such that s = s1 + ...+ sn we have:

I(nh+s) ⊆
n∏︂

i=1

I(si+1) (2.2)

For s = 0 we obtain I(nh) ⊆
∏︁n

i=1 I
(1) = (I(1))n = In (theorem 2.0.1). Ob-

serve that 2.2 is the other direction of point 3. in Remarks 4 and as it happened
for the containment problem only one of the two directions is elementary.

Another results on the containment problem came again from [BH10b], in
which it uses the least degree of a generator α(I) and the Castelnuovo-Mumford
regularity :

Definiton 2.3.2. Let I ⊂ R be an homogeneous ideal in a graded ring, and let

0 → · · · → Fj → · · · → F0 → I → 0

be the minimal free resolution of I over R, let fj be the maximal degree of a
generator in a minimal set of generators of Fj , then the regularity of I is:

reg(I) := max
j≥0

{fj − j}

Is possible to find more information in [Eis95, Section 20.5].

Lemma 2.3.3 (Postulation Criterion 2 from [BH10b]). Let I be a homogeneous
ideal defining a 0-dimensional sub-scheme in PN , if we have the inequality:

r · reg(I) ≤ α(I(m)) (2.3)

then we have:
I(m) ⊆ Ir

Here there are some sufficient conditions for the Stable Harbourne Conjec-
ture (2.2.2) to hold, discovered by Eloìsa Grifo in [Gri20].

Theorem 2.3.4. Let I be a radical ideal of big height h in a regular ring R,
suppose that one of this conditions holds:

1. if exists m > 0 such that I(hm−h) ⊆ Im

2. if exists m > 0 such that I(hm−h+1) ⊆ Im and for all r ≥ m we have
I(n+h) ⊆ II(n)

3. if the resurgence of the ideal satisfy ρ(I) < h

Academic Year 2020-21 13



The Containment Problem

then for n ≫ 0 we have I(hn−h+1) ⊆ In

The first condition is a direct consequence of this theorem, using that I(f+1) ⊆
I(f) for all f :

Theorem 2.3.5 (Theorem 2.5 of [Gri20]). Let R be a regular ring containing
a field, and let I be a radical ideal with big height h, if it exists m > 1 with
I(hm−h) ⊆ Im then for all k ≥ hm we have:

I(hk−h) ⊆ Ik

Proof. For a k ≥ hm we can write k = hm+ t with t ≥ 0. Then the idea of this
proof is to use theorem 2.3.1, with n = h+ t, s = h2m− h2 − h and

si =

{︄
hm− h− 1 for i = 1, ..., h

0 for i = h+ 1, ..., h+ t
(2.4)

thus we have hn + s = h(h + t) + h(hm − h − 1) = h2 + ht + h2m − h2 − h =
h(hm+ t)− h = hk − h. Hence using the theorem:

I(hk−h) = I(hn+s) ⊆ (I(mh−h))
h
It

∗
⊆ (Im)hIt = Imh+t = Ik (2.5)

Where in ∗ we use the hypothesis I(hm−h) ⊆ Im.
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CHAPTER

THREE

STEINER CONFIGURATION IDEAL

A Steiner system (V,B) of type S(t, n, v) is an hypergraph with |V | = v and
all the elements of B, called blocks, are n-subsets (of V ) such that every t-tuple
of elements in V is contained in only one block of B.
To be more clear we recall that an hypergraph (V,B) is a generalization of the
normal graph, in which V is a finite set and B contains non-empty subset of V
called hyper edges (a normal graph contains only pairs) such that they cover V
(
⋃︁

H∈B H = V ).
Geometrically the blocks can be seen as linear subspace in a projective space
that contains points in V , in particular this interpretation is useful for Steiner
triple system, that are Steiner system with t = 2 and n = 3, also indicated
with STS(v). Later we will use again algebraic geometry, but with a different
approach.

Example 10. The most known example of Steiner is of type STS(7) and, up
to isomorphism, is the Fano Plane (P3

F2
). It has as blocks all the lines (hyper-

planes):

B := {{1, 2, 3}, {3, 4, 5}, {3, 6, 7}, {1, 4, 7}, {2, 4, 6}, {2, 5, 7}, {1, 5, 6}}

In general the existence of a Steiner system depends on the parameters, for
instance a for a Steiner Triple system (t = 2, n = 3) we need v ≡ 1, 3 mod 6.
There are not known sufficient existence conditions, but only necessary, for
example if it exists a S(t, n, v) Steiner system we need:

|B| =
(︁
v
t

)︁(︁
n
t

)︁
This is simply combinatorics, in fact every t-tuple of vertices is contained in
only one block and each one of these contains

(︁
n
t

)︁
t-tuples.
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Steiner Configuration ideal

3.1 An algebraic representation of Steiner sys-
tems

As said before is possible to use algebraic geometry to represents the Steiner
systems, in particular the concept of star configuration of points:

Definiton 3.1.1. A finite set of points Z ⊂ Pn
k is a star configuration of

points of degree d ≥ n if there exists d general hyperplanes such that the
points of Z are exactly the ones that are intersection of n of these hyperplanes.

By general position we mean that any group of n hyperplanes intersect in
only one point and there is no point belonging to more than n hyperplanes. It
also used the notation d-star to emphasize the degree.

In our case we consider v-star configurations in Pn
k defined by the general

hyperplanes in Pn H = {H1, ...,Hv}, with Hi associated to the linear form li
(a linear map from Pn

k to the field of scalars k). Given an n-subset of V 1 σ :=
{σ1, ..., σv} we can associate to it a point of the configuration PH,σ = ∩σi∈σHσi

,
that has as vanishing ideal IPH,σ

= ⟨lσ1
, ..., lσv

⟩.
Observe that in this case the vertices are represented by (n − 1)-linear space
and the blocks by points.
Also we can define:

Definiton 3.1.2. Given a finite set V and a collection of non empty subset F
we can define, using the previous notation we can define the set of points:

XH,F :=
⋃︂
σ∈F

PH,σ (3.1)

and its defining ideal:
IXH,F :=

⋂︂
σ∈F

IH,σ (3.2)

Please notice that these constructions are more general, so to obtain a Steiner
System we assign F = B, obtaining XH,B and IXH,B

. We call XH,B the
Steiner configuration of points associated to the Steiner system (V,B) of
type S(t, n, v) with respect to H.
Also we indicate C(n,v) as the family of all the n-subset of V and we can con-
struct the Complement of a Steiner configuration of points with respect
to H as the scheme XH,C(n,v)\B (said C-Steiner and indicated XC too). Now
we obtain some interesting results for this particular scheme.
Remark 11. Since every point in Pn

k has height n we have that all these ideals
has pure height n

3.2 Containment problem for C-Steiner System
First of all we recall some results from [Bal+21a] in particular the Theorem 3.9:

1Since V is finite we can index it using natural numbers and assume V = {1, ..., v}
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Theorem 3.2.1. Consider a Steiner system (V,B) of type S(t, n, v), let XC ⊂
Pn be the correspondent C-Steiner configuration and IXC

its ideal, then:

1. α(IXC
) = v − n

2. α(I
(q)
XC

) = v − n+ q for q ∈ [2, n)

3. α(I
(m)
XC

) = α(I
(q)
XC

) + pv where m = pn+ q and q ∈ [0, n)

The idea behind the proof of this results is to construct a new simplicial
complex ∆C where we can evaluate α, thus show that the symbolic powers of
the associated ideals I

(m)
∆C

and I
(m)
XC

share the same homological invariants.
Remark 12. We can use the results from theorem 3.2.1 to get some situation in
which the containment problem fails, in fact for non-zero, proper, homogeneous
ideals I and J is straightforward that if α(I) < α(J) then I ̸⊆ J , in fact Iα(I) ̸= 0
but Jα(I) = 0.

Corollary 3.2.2. In the same hypothesis of theorem 3.2.1 we have I
(m)
XC

̸⊆ IdXC

for any pair (m, d) such that:

m ≡ 1 mod n and d > 1 +
(m− 1)v

n(v − n)
(3.3)

or
m ̸≡ 1 mod n and d > 1 +

m− n

n
+

m

v − n
(3.4)

In particular if v > 2n we have I
(n)
XC

̸⊆ I2XC

Proof. Using 1. from Theorem 3.2.1 and simple algebra we have α(IdXC
) =

dα(IXC
) = d(v − n), than from remark 12 is enough to prove:

α(I
(m)
XC

) < d(v − n) (3.5)

m ≡ 1 : we have m = pn+1 with p integer, so using 3. and 1. of theorem 3.2.1 for
q = 1 we have α(I

(m)
XC

)=α(IXC
) + pv=(v − n) + m−1

n v. Grouping by the
factor (n− v) and using the second part of 3.3 we get 3.5.

m ̸≡ 0, 1 : we have m = pn+ q with q = 0 or 2 ≤ q < n so using 3. and 2. of theorem
3.2.1 we get α(I(m)

XC
)=α(I

(q)
XC

)+pv= v−n+q+pv = (v−n)+m−pn+pv =

(1+ p)(v−n)+m. We can now simply observe that p = m−q
n ≥ m−n

n and
then group again by v − n to use the second part of 3.4 hence we get 3.5.

m ≡ 0 : we have m = pn, then 3.4 became with simple algebra d > pv
v−n , and hence

for 3. of theorem 3.2.1 α(I
(m)
XC

) = pv < d(v − n), that satisfy 3.5.

In particular for m = n and v > 2n we have

1 +
m− n

n
+

m

v − n
= 1 +

n

v − n
=

v

v − n
< 2

and hence I
(n)
XC

̸⊆ I2XC
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Example 13. Consider now Steiner system of type S(2, 3, 7) as in example 10,
given H = { H1, ...,H7} a collection of 7 hyperplanes in general position in P3

we can use them to construct the C-Steiner configuration XH,C(3,7)\B , it has:(︃
v

n

)︃
− |B| =

(︃
v

n

)︃
−

(︁
v
t

)︁(︁
n
t

)︁ =

(︃
7

3

)︃
−

(︁
7
2

)︁(︁
3
2

)︁ = 28

points in P3. Its defining ideal is IXC
.

Using the corollary 3.2.2 we get I
(3)
XC

̸⊆ I2XC
, that is a new counterexample for

question 9.

Other useful results from [Bal+21a] are the calculation of some homologi-
cal invariants of IXC

, like the regularity and the largest degree in a minimal
homogeneous set of generators of the ideal, i.e. the integer ω(IXC

) such that
given a minimal set of generators {f1, ..., fk} of IXC

we are granted to have
deg(fi) ≤ ω(IXC

) for all i and the bound is reached by at least one element.

Proposition 3.2.3 (Corollary 4.2 and 4.7 in [Bal+21a]). For a Steiner system
of type S(t, n, v) we have:

ω(IXC
) =

{︄
α(IXC

) = v − n if t = n− 1

reg(IXC
) if t < n− 1

(3.6)

with
reg(IXC

) = α(IXC
) + 1 = v − n+ 1 (3.7)

In particular we will use this proposition in combination with the lemma:

Lemma 3.2.4. Let I, J be homogeneous ideals in a Polynomial Ring R, if we
have both I ⊆ J and α(I)− ω(J) ≥ k > 0 then we have:

I ⊆ MkJ

Proof. Consider a minimal set of generators ⟨ξ1, ..., ξr⟩ = J , with degree bounded
by ω(J), then for an element f ∈ I (without loss og generality we assume it
homogenous) we have f =

∑︁
giξi, thus we have for all i with gi ̸= 0:

α(I) ≤ deg(f) = deg(giξi) = deg(gi) + deg(ξi) ≤ deg(gi) + ω(J)

therefore we have:
deg(gi) ≥ α(I)− ω(J) ≥ k

so gi ∈ Mk and the thesis follows.

Here we prove one of the main result of the article [Bal+21b]:

Theorem 3.2.5. Let IXC
⊂ k[x0, ..., xn] be the defining ideal of a Complement

of a Steiner configuration of points in Pn
k , then it satisfies:
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1. Stable Harbourne-Huneke Conjecture (2.2.3) (Proof of the second point
only for the case of t = n− 1)

2. Stable Harbourne Conjecture (2.2.2)

Proof. 1. Let I = IXC
be the ideal defining the Complement of a Steiner

configuration of points of type S(t, n, v) in Pn
k , we will use the lemma

3.2.4 in combination with proposition 3.2.3 and theorem 3.2.1 to evaluate
ω and α:

• Using theorem 2.0.1 with h = n we have I(hr) ⊆ Ir for all r > 0,
also we have α(I(nr)) = rv and ω(Ir) = rω(I) ≤ r(v − n + 1), so
α(I(nr))− ω(Ir) ≥ rv − rv + r(n− 1) = r(n− 1), thus for all r > 0:

I(nr) ⊆ Mr(n−1)Ir

• We have α(I(n(r−1))) = (r− 1)v and reg(I) = v− n+1 (Proposition
3.2.3 equation 3.7), thus for r ≫ 0 we have:

α(I(n(r−1))) = (r − 1)v ≥ r(v − n+ 1) = r reg(I)

so for the Postulation Criterion (Lemma 2.3.3) we have the contain-
ment I(n(r−1)) ⊆ Ir. Now we observe that assuming that t = n− 1:

α(I(n(r−1)))− ω(Ir) = (r − 1)v − r(v − n) = rn− v (3.8)

And so we have I(n(r−1)) ⊆ Mrn−vIr, thus we have:

I(n(r−1)+1)
∗
⊆ MI(n(r−1)) ⊆ Mrn−v+1Ir = Mrn−v−n+n+1Ir =

= Mrn−n−(v−n)+1Ir
∗∗
⊆ Mrn−n−r+1Ir = M(r−1)(n−1)Ir

Where in ∗ we have used proposition 2.2.4 and in ∗∗ that r ≫ 0 to
have r ≥ v − n.

2. Using theorem 2.3.4, condition 1. , and having for some r the containment
I(n(r−1)) ⊆ Ir we get for r ≫ 0 the containment I(hn−h+1) ⊆ In
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CHAPTER

FOUR

COLOURING OF AN HYPERGRAPH AND
CONTAINMENT

In this chapter we focus in an interesting relation between the colourability of
an hypergraph and the failure of the containment problem of its cover ideal.
Then we apply these results in the case of a Steiner System. These results were
proposed for the first time in the section 4 of [Bal+21b].

4.1 Colouring definitions
We can see two different definition of m-colouring, the first one is more descrip-
tive and use the intuitive notion of surjective map, focusing on the role of the
vertices:

Definiton 4.1.1. Let C be the set of possible colours, a colouring of the hy-
pergraph H = (V,E) is a surjective map c : V → C.
In the case of which C is finite we assume C = {1, . . . ,m} and we say that a
colouring c : V → C is a proper m-colouring if for every hyperedge β ∈ B we
have at least two vertices of different colours.

The second one is due to the fact that we can see a colouring as a partition
of the vertices (in fact is well known that a surjective map partitions the domain
using the fibres):

Definiton 4.1.2. An m-colouring of the hypergraph H = (V,E) is a partition
in m subset of V = U1⊔ ...⊔Um such that for every edge β ∈ E we have β ̸⊆ Ui

for all i = 1, ...,m

We introduce the chromatic number of the hypergraph H, indicated χ(H),
that is the minimum m such that H has an m-colouring.

Definiton 4.1.3. A hypergraph H is m-colourable if there exists a proper m-
colouring

20
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If the hypergraph has less than m vertices the condition of m-colourability
is equivalent to the inequality χ(H) ≤ m, in fact if we have a c-colouring
V = U1 ⊔ ... ⊔ Uc with v < c we can assume U1 to have more than 2 elements
and get a new partition: V = {x1} ⊔ U1 \ {x1} ⊔ ... ⊔ Um. Thus H is (c + 1)-
colourable and we can end by induction.

Definiton 4.1.4. We say that a hypergraph H is m-chromatic if it is m-
colourable, but no (m− 1)-colourable (i.e. χ(H) = m)

We see now a stronger definition, that also require at every block to have
vertices of every colour:

Definiton 4.1.5. A hypergraph H = (V,E) is said c-coverable if there exists a
partition in c subset of V = U1 ⊔ ...⊔Uc such that every Ui is a vertex cover,
which means that for all β ∈ E we have β ∩ Ui ̸= ∅ (Ui meets all the edges).

4.2 Edge between algebra and colouring theory
This concepts where introduced for graph in [Vil90] and for hypergraph in
[HVT08].

Definiton 4.2.1. Given a hypergraph H = (V,E), let V = {x1, ..., xv} and
k be a field, thus we can identify the vertices as variables in k[x1, ..., xv] (also
indicated k[V ]), then we can define the edge ideal:

I(H) := ⟨xi1 · · ·xir | {xi1 , ..., xir} ∈ E⟩ (4.1)

and the cover ideal as:

J(H) := ⟨xj1 · · ·xjr | {xj1 , ..., xjr} is a vertex cover of H⟩ (4.2)

I recall that a simple hypergraph is an hypergraph without loops (edges with
a single element) and without repeated edges (i.e. if β, γ ∈ E and β ⊆ γ then
β = γ).

The notion of edge ideal is of relevance for several reasons, for example
there is a natural bijection between simple hypergraph over V and squarefree
monomial ideal of k[V ]:{︃

simple hypergraphs
H = (V,E)

}︃
↔

{︃
squarefree monomial

ideals I ⊆ k [V ]

}︃
(β = {xi1 , ..., xir} ∈ E) ↔ (xi1 · · ·xir ∈ I)

It is possible to give a different definition of cover ideal that focuses more on
its primary decomposition. Indeed we can define for every β = {xi1 , ..., xir} ∈ E
the ideal:

pβ = ⟨xi1 , ..., xir ⟩ ⊆ k[V ] (4.3)

Academic Year 2020-21 21



Colouring of an hypergraph and containment

then it is obvious that for every squarefree monomial element xi1 · · ·xir it stays
in J(H) if and only if it stays in pβ for all β ∈ E (because this means it intersect
every edge), so we can also characterize:

J(H) =
⋂︂
β∈E

pβ (4.4)

Is possible to exploit the algebraic structure of the cover ideal to get in-
formation on the colouration of the hypergraph (and vice versa), for example
in [FHV11] the authors discovered that using the element mV = x1 · · ·xv is
possible to evaluate the chromatic number:

Theorem 4.2.2 (Theorem 3.2 of [FHV11]). Let H = (V,E) be a simple hyper-
graph on V = {x1, ..., xv}, then for all d > 0 we have md−1

V ∈ J(H)d if and only
if χ(H) ≤ d, thus we can characterize:

χ(H) = min{d |md−1
V ∈ J(H)d} (4.5)

For a hypergraph H = (V,B) we define τ(H) as the smallest cardinality
for a set minβ∈B{|β|}, we can use this number to show a link, introduced in
[Bal+21b], between the colouring properties of H and when the Containment
Problem fail for the cover ideal:

Theorem 4.2.3 (Theorem 4.8 of [Bal+21b]). Let H = (V,B) be a hypergraph,
if H is not d-coverable then J(H)(τ(H)) ̸⊆ J(H)d

Proof. Let τ = τ(H) and J = J(H), then we have:
since for each β ∈ B the ideal pβ has |β| ≥ τ elements, we have mV ∈ pτβ (it is
enough to use τ of the |b| variables and complete with the missing one). Then,
since the cover ideal is an intersection of prime ideals and so is radical, using
the theorem 1.4.2 we get mV ∈ J (τ).
Suppose now that mV ∈ Jd, then there exists m1, ...,md ∈ J with mV =
m1 · · ·md. We want to use them to construct a partition: Ui := {xu ∈
V |xu divides mi}. U1, ..., Ud is a partition because mV is squarefree (so no
repetition) and it is divided by all the vertices of V . Since for all i mi is a
squarefree monomial in J , by using the definition 4.2 of cover ideal we have
that Ui must be a vertex cover, and then we have a partition that satisfies
definition 4.1.5 of d-coverable, absurd.

We can use this theorem to prove the failure of Question 9 for cover ideals
of Steiner Triple System STS(v), in fact it is enough to prove that

Proposition 4.2.4 (Proposition 4.9 of [Bal+21b]). If v > 3 and S = (V,B) is
a Steiner Triple System S(2, 3, v), then J(S)(3) ̸⊆ J(S)2
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Another possible failure of the containment can be deducted by the chro-
matic number:

Theorem 4.2.5. Consider a simple hypergraph H = (V,B), if we indicate
τ = τ(H) and the cover ideal J = J(H), then for all q < χ(H) we have:

1. mq−1
V ∈ J(H)(τ(q−1))

2. J (τ(q−1)) ̸⊆ Jq

Proof. From theorem 4.2.2 we have mq−1
V ̸∈ Jq, therefore we only need to prove

1. to fail the containment 2.. For this we use as in 4.2.3 theorem 1.4.2:
For every β ∈ B we know that it has at least τ elements, without loss of
generality we can assume that they are x1, ..., xτ , and so we have xq−1

1 · · ·xq−1
τ ∈

p
τ(q−1)
β thus completing with the other elements we get mq−1

V ∈ p
τ(q−1)
β .
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