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Abstract

In this work I show a rielaboration of the article:

Cornelius Greither, Improving Ramachandra’s
and Levesque’s unit index, 1999

I’ve introduced the principal instruments and results from Galois Theory
and Number Theory necessary for the comprehension of the article, in
particular the circular units, the class number and the Dirchlet charactes.
The aim of the article is to generalize the results of other mathematichans
in the creation of a subgroup of the unit group EK with the same rank,
in particular it uses a general function β in the group ring Z[G0] to get
different groups. Then we study a particular choice of β, that define an
optimal group with a simple index [EK , Cβ ].
After this, in a jupyter file, I’ve implemented some of the calculations.
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1 Introduction to the working set

Consider the n-th cyclotomic field Q(ζn) with ζn a n-th primitive root of unity,
with n 6≡ 2 mod 4, and define K as the maximal real subfield of Q(ζ), also
another notation that we will use for the maximal real subfield is Q(ζn)+. From
now we will refer to ζn without the index if not necessary.

Proposition 1.1. The maximal real subfield is K = Q(ζ + ζ−1)

Proof. First of all we can easly see that K is real, infact since for the root of
unity ζ = ζ−1 (complex conjugation) and so:

ζ + ζ−1 = ζ + ζ−1 = ζ−1 + ζ

So ζ + ζ−1 is real and K too.
Since Q(ζ) is not real we have that the index e := [Q(ζ) : K] ≥ 2 (strictly
greater than 1).
Consider now the polynomial of degree 2 in K[x] : f = (x − ζ)(x − ζ−1) =
x2 − (ζ + ζ−1)x + 1, since ζ is a root obviosly e ≤ 2, so the subfield K has
maximal degre since this is the minimal degree for a proper subfield.
If there was anotherK ′ = Q(χ) with such property we can consider H = Q(ζ, χ)
that is also real with Q(ζ) ) H ⊃ K, so H = K and akin H = K ′ so K = K ′

and K is unique.

Q(ζ)

K H K ′

Q

2
2

2

Now we will consider the group
of units EK that is the group formed
by the invertible elements of its ring
of integers O∗K . Is it possible to char-
acterize the ring of integers for K [6,
Proposition 2.16] similiarly to what
happens for OQ(ζ) (infact the proof
follows without difficulty from this)

Proposition 1.2. OK = Z[ζ + ζ−1]

Since xn − 1 is separable Q(ζ)/Q
is a Galois extension and it’s easy to see that its Galois group G0 is isomorphic
to (Zn)∗. Also we can see that:

Proposition 1.3. K/Q is a Galois extension and its Galois group G is iso-
morphic to Z∗n/{±1}

Proof. Consider the map σ : G0 → G that maps αi to αi|K where αi is the
automorphism that maps ζ to ζi. Obviously σ is a morphism of groups. Also
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it is easy to describe its kernerl:

ker(σ) ={αi ∈ G0 |x = αi(x) for all x ∈ K}
(1)
={αi ∈ G0 | ζ + ζ−1 = αi(ζ + ζ−1) = ζi + ζ−i}
(2)
={α1, α−1}

Where (1) follows from the fact thatK = Q(ζ+ζ−1) and (2) from linear algebra.
So from the first theorem of isomorphism σ(G0) ' Z∗n/{±1} and then

φ(n)/2 = |Z∗n/{±1}| ≤ |G| ≤ [K : Q] = [Q(ζ) : Q]/2 = φ(n)/2

So σ(G0) = G and |G| = [K : Q] and the thesis follows.

Remark 1. We excluded the case of n ≡ 2 mod 4 because it is a repetition,
infact in this situation G0 ' Z∗2+4k and since 2+4k = 2(1+2k) with the second
term odd for the Chinese reminder theorem Z∗2+4k ' Z∗2×Z∗1+2k ' {1}×Z∗1+2k '
Z∗1+2k that is isomorphic to the Galois group for the n/2-th root of unity.

1.1 The circluar units and the class number
Definiton 1.4. If K is a number field (as Q(ζ) and K) we can define the ideal
class group as the quotient FK/PK where:

FK is the group of the nonzero fractional ideals of the ring of integers OK, that
are the OK-submodules J of K such that exists r ∈ OK such that rI ⊂ OK

PK is the set of nonzero principal fractionary ideals, so the ideals generated
by only one element

We will indicate the number of classes in FK/PK as hK . This number will
measure the "distance" of OK to became a unique factorization domain. In [4,
Page 141] it is proven that actually the ideal class group is finite so hK is well
defined.

Definiton 1.5. For a field K ⊆ Q(ζn) (with n minimal) we define the group of
cyclotomic (or circular) units as the intesection CK of the group generated by:

{−1, ζ, 1− ζa for a = 1, ..., n− 1}

and the unit group of OK ( EK ). An elements of CK is said to be a circular
unit of K.

In general the circular units aren’t easy to describe, infact in general 1− ζa
is not a unit, but for the particular case in which K is the maximal real subfield
( K ) it has some intresting properties and it’s related to the class number.

If n = pm where p is a prime it is possible to describe ([6, Lemma 8.1,
Theorem 8.2]) explicitly the group of circluar units as the group generated by
−1 and:

ξa = ζ
1−a
2

1− ζa

1− ζ
for 1 < a <

pm

2
, (a, p) = 1

3



Also we have the equality for the index:

[EK : CK ] = hK

Moreover Sinnot in [5] has generalized this to arbitrary n by showing that
EK/CK is finite and the index is:

[EK : CK ] = 2ahK

where if g is the number of distinct primes dividing n we have that a = 0 if
g = 1 (as expected) and a = 2g−2 +1−g otherwhise. Even if the index is simple
does not exist a simple costruction of CK , so we have the problem:

Explicitly construct a group C ′ with finite index [EK : C ′] that is optimal

Where we will understand later what we mean by optimal, but essentially we
want the index to be small and with a simple factorization for [EK : C ′]/hK . In
particular the costruction of Greither will generalize the work of Ramachandra
and Levesque, so we will omit them from now and see them later.

1.2 Dirichlet Characters
Definiton 1.6. Given a group X and a field F a Dirichlet character is a group
homomorphism χ : X → F∗

In our case the field is C and X is the Galois group G0 ' Z∗n, so we can see
the Dirichlet characters as homomorphisms: ξ : Z∗n → C∗. Since if n|m there is
a natural homomorphism Z∗m → Z∗n, composing it with χ we can induct a new
character χ̂ : Z∗m → C∗. This characters are completely equivalent. So we can
define k to be minimal positive integer such that exists a character χ′ : Z∗k → C∗
equivalent to χ, and call it the conductor of χ, denoted by fχ := k.

In some cases the character are also extended as ring homomorphisms from
Zn → C, assuming χ to be zero on the non invertible elements. In this way
the conductor can be seen as a sort of period, infact for all n we have χ(n) =
χ(n+ fχ).

Also we need another object: the group ring Z[G], that is a free Z-module
with G as basis on which we define the addition (using the module addition)
and the moltiplication inducting it from the operation of G. This costruction is
also possible for a general ring and a multiplicative group:

Definiton 1.7. The group ring of X over R, denoted by R[X] or RX, is the
set of all mapping f : X → R with finite support (i.e. with finite x ∈ X such
that f(x) 6= 0). The addition and the scalar multiplication are defined as usual.

We can also have a group structure over R[X] using the vector addition
and the multiplication: were fg is defined as: fg(x) =

∑
y∈X f(y)g(y−1x) =∑

uv=x f(u)g(v).
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This is only a formal representation of the linear combinations, useful for the
definition, but we will obviosly use a simpler notation f =

∑
x∈X f(x)x.

Now we would like to generalize again the characters as ring homorphism
from Z[G] (or another Galois group) to C. This is very simple since G is a basis
for the free Z-module its definition over the group is enougth.

Notation. Given the elements z ∈ Q(ζ) and f ∈ Z[G0] it’s well defined the
power notation zf , infact for g ∈ G0 we have the well definiton for zg = g(z) ,
zg1+g2 = zg1zg2 and z−g = (zg)−1.

2 The Greither Setup

Let’s consider an integer n (with n 6≡ 2 mod 4), with factorization n = pe11 · · · pess
and let S = {1, ..., s}. We will use the power set PS = {I | I ( S} and the no-
tation nI =

∏
i∈I p

ei
i

The Greither’s idea is to define a subgroup starting from a function β : PS →
Z[G0], then varing β we have different subgroups but with similiar properties.

Definiton 2.1. A function β is called multiplicative if β(∅) = 1 and for all sets
I, J with empty intersection we have β(I ∪ J) = β(I)β(J).

A multiplicative function is uniquely determinated by its values on the sin-
gletons: {{i} |, i ∈ S} (we will use this later for a particular construction)

Consider a general function β and I ∈ PS , we define zI := 1− ζnI and

z(β) :=
∏
I∈PS

z
β(I)
I

Using that 1 − ζ−m = −ζ−m(1 − ζm) , ζ = ζ−1 and the properties of complex
conjugation we have that

z(β) =
∏
I∈PS

(1− ζ−nI )β(I) =
∏
I∈PS

−ζ−nIβ(I)(1− ζnI )β(I) =

= (−1)|PS |
∏
I∈PS

ζ−nIβ(I)z
β(I)
I

∗
=−ζ−tz(β) with t =

∑
nIβ(I) (1)

In ∗ we use that |PS | = 2s − 1 is odd.
We define now for a ∈ (1, n/2) coprime with n the real unit:

ξa(β) := ζda(β)
σa(z(β))

z(β)
with da(β) = (1− a)

t

2
(2)

Where σa is the automorphism ζ 7→ ζa. This is real because using the equation
1 and σa(z) = σa(z) we have:

ξa(β) = ζ−da(β)
ζ−atσa(z(β))

ζ−tz(β)
= ξa(β) (3)
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And its a unit because its the product of circular units. We now use this units
to define the goal group of the article:

Cβ is the group generated by -1 and ξa(β) for 1 < a < n/2 and (a, n) = 1

For its index we will use the notation: [EK : Cβ ] = hKiβ .

2.1 A little remark
Sometimes it is easier to work with functions β to Z[G] instead of Z[G0] and
than consider a lift β : PS → Z[G0]. Obviously this is not unique, but this is
not a problem because we can show that Cβ remain the same.
Remark 2. Given two set Z, Y and a function φ : Y → Z we say that f ′ : X → Y
is a lift of f : X → Z if f = φ ◦ f ′, i.e. if the following diagram commute:

Y

X Z

φ

f

f ′

In our case φ is the morphism inducted on the group ring by the projection
G0 ' Z∗n → Z∗n/± 1 ' G

Initally we can osserve that we can factor the real unit ξa(β) with simpler
real units

xa(β, I) = ζ
(1−a)

2 nIβ(I)
σa(z

β(I)
I )

z
β(I)
I

such that we have the equality:

ξa(β) =
∏
I∈PS

xa(β, I) (4)

Lemma 2.2. Consider two functions β1 and β2 from PS to Z[G0] such that
for all I ∈ PS their images of βi(I) coincides in Z[Gal(Q(ζn/nI )

+/Q)] 1 for
i = 1, 2. Then for all I ∈ PS xa(βi, I) coincides for i = 1, 2

Proof. Obviously for all I ∈ PS xa(βi, I) depends only on the image of βi over
zI = 1−ζnIn ∈ Q(ζn/nI )

2, so it’s enougth to show the equivalence over Q(ζn/nI ).
Since the two functions are equal on Q(ζn/nI )

+ their difference β1(I)− β2(I) is
the identity on the reals, so it is a multimple of 1 − j, where j is the complex
conjugation We can observe now, using morphism properties, that exist a unit
r such that:

Q(ζn/nI )
+ 3 q =

xa(β1, I)

xa(β2, I)
=

(
ζ

(1−a)
2 nI

σa(zI)

zI

)β1(I)−β2(I)

= r1−j

1Observe that Q(ζn/nI )
+ is a subfield of K since ζn/nI = ζ

nI
n , and since we see the

elements of the group rings as homomorphism of fields make sense to compare two elements
for their image on Q(ζn/nI )

+

2ζn/nI = ζ
nI
n
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So we have that q = qj = r(1−j)j = rj−1 = q−1 (since j2 = 1), that for real
numebers happen only for ±1

Remark 3. For what we have seen in the equation 4 it follows immediatly that
also ξa(β) is unique up to a sign if β is a lifting of a function from PS to Z[G].
Since the group Cβ contains −1 it is enougth to have a function β : PS → Z[G]
for its definition.

3 Index calculation

Theorem 3.1. For any function β : PS → Z[G] we have

iβ =
∏
χ 6=1
even

 ∑
I∈PS

(fχ,nI)=1

φ(nI) · χ(β(I)) ·
∏
i 6∈I

(1− χ−1(pi))

 (5)

Remarks 4 (On theorem 3.1). • φ is the Euler totient function

• A character χ is said to be even if χ(−1) = 1

• With χ−1 we mean the character defined as 1/χ on the invertible elements
and zero otherwhise, that is also a morphism because 1/(xy) = (1/x)(1/y).

For the proof we need the following Lemmas:

Lemma 3.2. For z ∈ Q(ζ)∗ and γ ∈ Z[G0], then for any character χ we have:∑
(a,n)=1

χ−1(a) log |zσaγ | = χ(γ)
∑

(a,n)=1

χ−1(a) log |zσa | (6)

Proof. It is easy to prove this for γ = σg ∈ G0, infact since g is invertible in Zn is
possible to change the index from (a, n) = 1 to (ag, n) = 1 and rearrange. Then
we can pass to Z[G0] using the additivity of χ and the logaritm of exponential
(also the modulo is multiplicative).

For the calculation of the index we need a new object that allows to evaluate
a :

Definiton 3.3. The regulator RL of a number fields L is defined as follows:
given its rank r, a set of independent units {ε1, ..., εr} ⊂ L and {σ1, ..., σr+1} its
embedding into R or C. Set δj to be 1 if σj is real, and 2 otherwhise.
Then:

RL(ε1, ..., εr) = |det(δi log |εσij |)1≤i,j≤r| (7)

Remark 5. The embedding that we decide to omit is not relevant, infact since
they are units their norm is 1, so

∑
i δi log |εσij | = log |

∏
i ε
δiσi
j | = log |N(εj)| =

0, so writing this equality as a linear system from Cramer formula follows the
uniqueness of the determinant up to a sign.
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Now we need to recall some Lemmas from [6] without the proofs:

Lemma 3.4 (Lemma 4.15 in [6]). Given the groups A ⊂ B of finite index,
generated by independent units of a number field L, respectively {εi}ri=1 and
{µi}ri=1:

[B : A] =
RL(ε1, ..., εr)

RL(µ1, ..., µr)
(8)

Lemma 3.5 (Lemma 5.26 in [6]). Let X be a finite abelian group and let f be
a function on X with values in C

det(f(στ−1)− f(σ))σ,τ 6=1 =
∏
χ∈X̂
χ 6=1

∑
σ∈X

χ(σ)f(σ) (9)

Where X̂ is the set of homorphisms (characters) from X to C∗

In our case X will be G ≡ Zn/ ± 1, and so the elements of X̂ are the even
characters of Zn.

Proof of Theorem 3.1 . Using Lemma 3.4 we can evaluate [EK : Cβ ] with the
quotient of the regulators. In the equation 8 we can omit the unit −1 since it is
contained in both the two groups (for what we have said in 5 can only change
a sign).

So we need to prove that R(ξa(β)) = ±RKhKA with (a, n) = 1 , 1 < a < n/2
and A be the right part of the equation 5. The ± is a more simple way to indicate
that we don’t matter the sign without inserting everything in a modulo.

From definition, using that δi is always 1 since the units are all real and the
embeddings can be seen as elements of the Galois Group G :

R(ξa(β)) = ±det[log |ξa(β)τ |] ((a, n) = 1 , 1 < a < n/2 ; τ ∈ G)

(1)
= ±det[f(τσ)− f(τ)]σ,τ∈G−1 with f(σ) = log |σz(β)|

=
∏
χ 6=1
even

1

2

∑
(a,n)=1

χ−1(a) log |σaz(β)| using Lemma 3.5

=
∏
χ 6=1
even

1

2

∑
(a,n)=1

χ−1(a)
∑
I∈PS

log |(1− ζnia)β(I)|

=
∏
χ6=1
even

1

2

∑
I∈PS

 ∑
(a,n)=1

χ−1(a) log |(1− ζnia)β(I)|


6
=
∏
χ 6=1
even

1

2

∑
I∈PS

χ(β(I))
∑

(a,n)=1

χ−1(a) log |(1− ζnia)|


Where in (1) we have used that log |ζd| = 0 because ζ is a unit and the logaritm’s
properties.
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The last part is a bit technical and uses [6, Lemma 8.4] to reduce the first
sum to the I ∈ PS such that (fχ, nI) = 1, and then continues as for the proof
of Theorem 8.3 in [6, Pages 148-150] and involves the analytic class numebr
formula and Dirichlet L-series (also Chapter 4 in [6]).

3.1 Particular case of formula 5
Now we can try to see what happen if we request some conditions over β, with
some particular cases.

Theorem 3.6. If we assume β : PS → Z[G] to be multiplicative then:

iβ =
∏
χ 6=1
even

∏
pi-fχ

(
φ(peii ) · χ(β(i)) + 1− χ−1(pi)

) (10)

Where β(i) mean β({i})

Proof. It is easy that we can lift β to Z[G0] conserving multiplicativity. Consider
now, for χ 6= 1 even, the two factors :

Tχ =
∑
I∈PS

(fχ,nI)=1

φ(nI) · χ(β(I)) ·
∏
i 6∈I

(1− χ−1(pi)) (11)

and
Uχ =

∏
pi-fχ

(
φ(peii ) · χ(β(i)) + 1− χ−1(pi))

)
(12)

that are the arguments of the products in equations 5 and 10. So it’s enough
to prove Uχ = Tχ. Initially we can observe that the argument of the sum in 11
are the subset of Sχ = {i | pi - fχ}. Also we can observe

φ(nI) =
∏
i∈I

φ(peii )

χ(β(I)) = χ

(∏
i∈I

β(i)

)
=
∏
i∈I

χ(β(i))

From which expanding the product of Uχ we get the equality.

Using this formula and the definition of Cβ we can see that for β ≡ 1 (that is
the simplest example of multiplicative β) we get the Ramachandra’s unit index
from [3] (or in a more modern notation [6, Theorem 8.3] ):

[EK : CR] = hK ·
∏
χ 6=1
even

∏
pi-fχ

(φ(peii ) + 1− χ(pi)))

 (13)
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Where CR is the group generated by −1 and the units of the form of 2 with
β(I) = 1:

ξa := ζda
∏
I∈PS

1− ζanI
1− ζnI

with da =
1

2
(1− a)

∑
I∈PS

nI

We can also construct β multiplicative such that:

β(i) =

{
1 if exists χ 6= 1 even, with χ(pi) = 1

0 otherwhise

And we obtain the Levesque group CD defined in [2, Page 331]

3.2 A new system of units
Following the previous steps we know construct a new multiplicative map β
with a more optimal index.

Notation. If x is an element of finite group Γ we define:

Nx := 1 + x+ ...+ xord(x)−1 ∈ Z[Γ]

This will be called trace element of x.

Let now define Gi for i = 1, ..., s to be the Galois group Gal(Q(ζn/peii
)+/Q)).

Consider now the Frobenius automorphism Fi ∈ Gi:

Fi : Q(ζn/peii
)+ −→ Q(ζn/peii

)+

ζn/peii
7−→ ζpi

n/p
ei
i

and its trace element NFi ∈ Z[Gi]. Now we choose for every i = 1, ..., s a lift of
NFi into Z[G0]3 and associate it to β(i); then β is defined multiplicatively.

Of course β is not unique, but for all I ∈ PS they coincide in Z[Gal(Q(ζn/nI )
+/Q)],

so we can use Lemma 2.2 and Cβ is well defined.

3.3 A factorization for iβ

Here we will recall some facts and definitions from [4, Chapter 11]. These are
genaralities for a finite separable extension of a number field, but we will restrict
in the case of K/Q number field.

Consider a prime p in Z and its ideal extension in the ring of integers pOK.
Since OK is a Dedekin domain we can factorize it with prime ideals:

pOK =

g∏
j=1

p
εj
j (14)

3Remind that ζ
n/p

ei
i

= ζ
p
ei
i
n
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Definiton 3.7. The number g is said to be the decomposition degree (or num-
ber) of p in the extension K/Q.

For every j = 1, ..., g, εj is said to be the ramification degree (or index) of
pj in K/Q.

For every j = 1, ..., g, fj := [OK/pj : Zp] is called the inertial degree (or
residual).

In particular is possible to prove that if n = [K : Q] so

n =

g∑
j=1

fjεj

Also if K/Q is a Galois extension then also εj , fj does not depend on j and so

n = εfg

We also recall from [6, Theorem 3.7] the relation between the characters X
over the galois group of K/Q and decomposition degree of p in the extension
K/Q :

g = |{χ ∈ X |χ(p) = 1} (15)

We have now the ingredients for evaluating in a optimal way iβ .
For i ∈ 1, ..., s define gi, fi, εi to be as in the definition 3.7 for the prime pi

in K/Q.
Is possible to show (fact A in [4, Page 544]) that the inertia degree fi is

closely realted with the Frobenius morphism, in fact

fi = ord(Fi)

Theorem 3.8. With Cβ defined as before we have

iβ =

s∏
i=1

εgi−1i f2gi−1i

Remark 6. This index is optimal because we have a lot of info about its factor-
ization for definiton, also since εi and fi are factors of φ(n)/2, the factorization
of the last one is enough to know the iβ ’s. We will see later that is also smaller
than other index already studied.

Proof. For s = 1 this is trivial, since iβ = 1.
For s ≥ 2 is possible to prove that εi = φ(peii ). For i ∈ S and χ such that

pi - fχ we define

y(χ, i) = φ(peii ) · χ(β(i)) + 1− χ−1(pi)

Considering χ to be the character induced by χ in Gi we have χ(β(i)) = χ(NF i)
and χ(pi) = χ(Fi) using the isomorphism between Gi and the relative modulo
ring. There are two cases:
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χ(pi) = 1 : χ(NFi) =
∑
χ(Fi)

j =
∑

1 = ord(Fi) = fi and so y(χ, i) = φ(peii )fi + 0 =
εifi

χ(pi) 6= 1 : Since χ(Fi) 6= 1 follows χ(NFi) = 0. Hence y(χ, i) = φ(peii ) · χ0 + 1 −
χ−1(pi) = 1− χ−1(pi)

Then, indexing the product by i:

iβ =

s∏
i=1

∏
χ6=1 even
pi-fχ

y(χ, i)

=

s∏
i=1

 ∏
χ(pi)=1

εifi
∏

χ(pi)6=1

(1− χ−1(pi))

 (χ 6= 1 even, pi - fχ)

∗
=

s∏
i=1

((εifi)
gi−1 · fgii )

=

s∏
i=1

εgi−1i f2gi−1i

In ∗ the exponent gi−1 come from 15 (there isn’t the trivial character). Instead
for the second part we are using that, since χ−1(pi) = χ−1(Fi) is a non trivial
ord(Fi) = fi-th root of unity for all characters (and varing χ we get every unit
gi times) we use that from the factorization of xf−1 as (x−1)(1+x+ ...+xf−1)
evaluated in 1 we have

∏
ζf=1,ζ 6=1(1− ζ) = f .
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